mirror of
https://github.com/esphome/esphome.git
synced 2024-12-02 11:44:13 +01:00
317 lines
11 KiB
C++
317 lines
11 KiB
C++
#include "sun.h"
|
|
#include "esphome/core/log.h"
|
|
|
|
/*
|
|
The formulas/algorithms in this module are based on the book
|
|
"Astronomical algorithms" by Jean Meeus (2nd edition)
|
|
|
|
The target accuracy of this implementation is ~1min for sunrise/sunset calculations,
|
|
and 6 arcminutes for elevation/azimuth. As such, some of the advanced correction factors
|
|
like exact nutation are not included. But in some testing the accuracy appears to be within range
|
|
for random spots around the globe.
|
|
*/
|
|
|
|
namespace esphome {
|
|
namespace sun {
|
|
|
|
using namespace esphome::sun::internal;
|
|
|
|
static const char *const TAG = "sun";
|
|
|
|
#undef PI
|
|
#undef degrees
|
|
#undef radians
|
|
#undef sq
|
|
|
|
static const num_t PI = 3.141592653589793;
|
|
inline num_t degrees(num_t rad) { return rad * 180 / PI; }
|
|
inline num_t radians(num_t deg) { return deg * PI / 180; }
|
|
inline num_t arcdeg(num_t deg, num_t minutes, num_t seconds) { return deg + minutes / 60 + seconds / 3600; }
|
|
inline num_t sq(num_t x) { return x * x; }
|
|
inline num_t cb(num_t x) { return x * x * x; }
|
|
|
|
num_t GeoLocation::latitude_rad() const { return radians(latitude); }
|
|
num_t GeoLocation::longitude_rad() const { return radians(longitude); }
|
|
num_t EquatorialCoordinate::right_ascension_rad() const { return radians(right_ascension); }
|
|
num_t EquatorialCoordinate::declination_rad() const { return radians(declination); }
|
|
num_t HorizontalCoordinate::elevation_rad() const { return radians(elevation); }
|
|
num_t HorizontalCoordinate::azimuth_rad() const { return radians(azimuth); }
|
|
|
|
num_t julian_day(time::ESPTime moment) {
|
|
// p. 59
|
|
// UT -> JD, TT -> JDE
|
|
int y = moment.year;
|
|
int m = moment.month;
|
|
num_t d = moment.day_of_month;
|
|
d += moment.hour / 24.0;
|
|
d += moment.minute / (24.0 * 60);
|
|
d += moment.second / (24.0 * 60 * 60);
|
|
if (m <= 2) {
|
|
y -= 1;
|
|
m += 12;
|
|
}
|
|
int a = y / 100;
|
|
int b = 2 - a + a / 4;
|
|
return ((int) (365.25 * (y + 4716))) + ((int) (30.6001 * (m + 1))) + d + b - 1524.5;
|
|
}
|
|
num_t delta_t(time::ESPTime moment) {
|
|
// approximation for 2005-2050 from NASA (https://eclipse.gsfc.nasa.gov/SEhelp/deltatpoly2004.html)
|
|
int t = moment.year - 2000;
|
|
return 62.92 + t * (0.32217 + t * 0.005589);
|
|
}
|
|
// Perform a fractional module operation where the result will always be positive (wrapping around)
|
|
num_t wmod(num_t x, num_t y) {
|
|
num_t res = fmod(x, y);
|
|
if (res < 0)
|
|
res += y;
|
|
return res;
|
|
}
|
|
|
|
num_t internal::Moment::jd() const { return julian_day(dt); }
|
|
|
|
num_t internal::Moment::jde() const {
|
|
// dt is in UT1, but JDE is based on TT
|
|
// so add deltaT factor
|
|
return jd() + delta_t(dt) / (60 * 60 * 24);
|
|
}
|
|
|
|
struct SunAtTime {
|
|
num_t jde;
|
|
num_t t;
|
|
|
|
// eq 25.1, p. 163; julian centuries from the epoch J2000.0
|
|
SunAtTime(num_t jde) : jde(jde), t((jde - 2451545) / 36525.0) {}
|
|
|
|
num_t mean_obliquity() const {
|
|
// eq. 22.2, p. 147; mean obliquity of the ecliptic
|
|
num_t epsilon_0 = (+arcdeg(23, 26, 21.448) - arcdeg(0, 0, 46.8150) * t - arcdeg(0, 0, 0.00059) * sq(t) +
|
|
arcdeg(0, 0, 0.001813) * cb(t));
|
|
return epsilon_0;
|
|
}
|
|
|
|
num_t omega() const {
|
|
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
|
|
// in degrees
|
|
num_t omega = 125.05 - 1934.136 * t;
|
|
return omega;
|
|
}
|
|
|
|
num_t true_obliquity() const {
|
|
// eq. 25.8, p. 165; correction factor for obliquity of the ecliptic
|
|
num_t delta_epsilon = 0.00256 * cos(radians(omega()));
|
|
num_t epsilon = mean_obliquity() + delta_epsilon;
|
|
return epsilon;
|
|
}
|
|
|
|
num_t mean_longitude() const {
|
|
// eq 25.2, p. 163; geometric mean longitude = mean equinox of the date in degrees
|
|
num_t l0 = 280.46646 + 36000.76983 * t + 0.0003032 * sq(t);
|
|
return wmod(l0, 360);
|
|
}
|
|
|
|
num_t eccentricity() const {
|
|
// eq 25.4, p. 163; eccentricity of earth's orbit
|
|
num_t e = 0.016708634 - 0.000042037 * t - 0.0000001267 * sq(t);
|
|
return e;
|
|
}
|
|
|
|
num_t mean_anomaly() const {
|
|
// eq 25.3, p. 163; mean anomaly of the sun in degrees
|
|
num_t m = 357.52911 + 35999.05029 * t - 0.0001537 * sq(t);
|
|
return wmod(m, 360);
|
|
}
|
|
|
|
num_t equation_of_center() const {
|
|
// p. 164; sun's equation of the center c in degrees
|
|
num_t m_rad = radians(mean_anomaly());
|
|
num_t c = ((1.914602 - 0.004817 * t - 0.000014 * sq(t)) * sin(m_rad) + (0.019993 - 0.000101 * t) * sin(2 * m_rad) +
|
|
0.000289 * sin(3 * m_rad));
|
|
return wmod(c, 360);
|
|
}
|
|
|
|
num_t true_longitude() const {
|
|
// p. 164; sun's true longitude in degrees
|
|
num_t x = mean_longitude() + equation_of_center();
|
|
return wmod(x, 360);
|
|
}
|
|
|
|
num_t true_anomaly() const {
|
|
// p. 164; sun's true anomaly in degrees
|
|
num_t x = mean_anomaly() + equation_of_center();
|
|
return wmod(x, 360);
|
|
}
|
|
|
|
num_t apparent_longitude() const {
|
|
// p. 164; sun's apparent longitude = true equinox in degrees
|
|
num_t x = true_longitude() - 0.00569 - 0.00478 * sin(radians(omega()));
|
|
return wmod(x, 360);
|
|
}
|
|
|
|
EquatorialCoordinate equatorial_coordinate() const {
|
|
num_t epsilon_rad = radians(true_obliquity());
|
|
// eq. 25.6; p. 165; sun's right ascension alpha
|
|
num_t app_lon_rad = radians(apparent_longitude());
|
|
num_t right_ascension_rad = atan2(cos(epsilon_rad) * sin(app_lon_rad), cos(app_lon_rad));
|
|
num_t declination_rad = asin(sin(epsilon_rad) * sin(app_lon_rad));
|
|
return EquatorialCoordinate{degrees(right_ascension_rad), degrees(declination_rad)};
|
|
}
|
|
|
|
num_t equation_of_time() const {
|
|
// chapter 28, p. 185
|
|
num_t epsilon_half = radians(true_obliquity() / 2);
|
|
num_t y = sq(tan(epsilon_half));
|
|
num_t l2 = 2 * mean_longitude();
|
|
num_t l2_rad = radians(l2);
|
|
num_t e = eccentricity();
|
|
num_t m = mean_anomaly();
|
|
num_t m_rad = radians(m);
|
|
num_t sin_m = sin(m_rad);
|
|
num_t eot = (y * sin(l2_rad) - 2 * e * sin_m + 4 * e * y * sin_m * cos(l2_rad) - 1 / 2.0 * sq(y) * sin(2 * l2_rad) -
|
|
5 / 4.0 * sq(e) * sin(2 * m_rad));
|
|
return degrees(eot);
|
|
}
|
|
|
|
void debug() const {
|
|
// debug output like in example 25.a, p. 165
|
|
ESP_LOGV(TAG, "jde: %f", jde);
|
|
ESP_LOGV(TAG, "T: %f", t);
|
|
ESP_LOGV(TAG, "L_0: %f", mean_longitude());
|
|
ESP_LOGV(TAG, "M: %f", mean_anomaly());
|
|
ESP_LOGV(TAG, "e: %f", eccentricity());
|
|
ESP_LOGV(TAG, "C: %f", equation_of_center());
|
|
ESP_LOGV(TAG, "Odot: %f", true_longitude());
|
|
ESP_LOGV(TAG, "Omega: %f", omega());
|
|
ESP_LOGV(TAG, "lambda: %f", apparent_longitude());
|
|
ESP_LOGV(TAG, "epsilon_0: %f", mean_obliquity());
|
|
ESP_LOGV(TAG, "epsilon: %f", true_obliquity());
|
|
ESP_LOGV(TAG, "v: %f", true_anomaly());
|
|
auto eq = equatorial_coordinate();
|
|
ESP_LOGV(TAG, "right_ascension: %f", eq.right_ascension);
|
|
ESP_LOGV(TAG, "declination: %f", eq.declination);
|
|
}
|
|
};
|
|
|
|
struct SunAtLocation {
|
|
GeoLocation location;
|
|
|
|
num_t greenwich_sidereal_time(Moment moment) const {
|
|
// Return the greenwich mean sidereal time for this instant in degrees
|
|
// see chapter 12, p. 87
|
|
num_t jd = moment.jd();
|
|
// eq 12.1, p.87; jd for 0h UT of this date
|
|
time::ESPTime moment_0h = moment.dt;
|
|
moment_0h.hour = moment_0h.minute = moment_0h.second = 0;
|
|
num_t jd0 = Moment{moment_0h}.jd();
|
|
num_t t = (jd0 - 2451545) / 36525;
|
|
// eq. 12.4, p.88
|
|
num_t gmst = (+280.46061837 + 360.98564736629 * (jd - 2451545) + 0.000387933 * sq(t) - (1 / 38710000.0) * cb(t));
|
|
return wmod(gmst, 360);
|
|
}
|
|
|
|
HorizontalCoordinate true_coordinate(Moment moment) const {
|
|
auto eq = SunAtTime(moment.jde()).equatorial_coordinate();
|
|
num_t gmst = greenwich_sidereal_time(moment);
|
|
// do not apply any nutation correction (not important for our target accuracy)
|
|
num_t nutation_corr = 0;
|
|
|
|
num_t ra = eq.right_ascension;
|
|
num_t alpha = gmst + nutation_corr + location.longitude - ra;
|
|
alpha = wmod(alpha, 360);
|
|
num_t alpha_rad = radians(alpha);
|
|
|
|
num_t sin_lat = sin(location.latitude_rad());
|
|
num_t cos_lat = cos(location.latitude_rad());
|
|
num_t sin_elevation = (+sin_lat * sin(eq.declination_rad()) + cos_lat * cos(eq.declination_rad()) * cos(alpha_rad));
|
|
num_t elevation_rad = asin(sin_elevation);
|
|
num_t azimuth_rad = atan2(sin(alpha_rad), cos(alpha_rad) * sin_lat - tan(eq.declination_rad()) * cos_lat);
|
|
return HorizontalCoordinate{degrees(elevation_rad), degrees(azimuth_rad) + 180};
|
|
}
|
|
|
|
optional<time::ESPTime> sunrise(time::ESPTime date, num_t zenith) const { return event(true, date, zenith); }
|
|
optional<time::ESPTime> sunset(time::ESPTime date, num_t zenith) const { return event(false, date, zenith); }
|
|
optional<time::ESPTime> event(bool rise, time::ESPTime date, num_t zenith) const {
|
|
// couldn't get the method described in chapter 15 to work,
|
|
// so instead this is based on the algorithm in time4j
|
|
// https://github.com/MenoData/Time4J/blob/master/base/src/main/java/net/time4j/calendar/astro/StdSolarCalculator.java
|
|
auto m = local_event_(date, 12); // noon
|
|
num_t jde = julian_day(m);
|
|
num_t new_h = 0, old_h;
|
|
do {
|
|
old_h = new_h;
|
|
auto x = local_hour_angle_(jde + old_h / 86400, rise, zenith);
|
|
if (!x.has_value())
|
|
return {};
|
|
new_h = *x;
|
|
} while (std::abs(new_h - old_h) >= 15);
|
|
time_t new_timestamp = m.timestamp + (time_t) new_h;
|
|
return time::ESPTime::from_epoch_local(new_timestamp);
|
|
}
|
|
|
|
protected:
|
|
optional<num_t> local_hour_angle_(num_t jde, bool rise, num_t zenith) const {
|
|
auto pos = SunAtTime(jde).equatorial_coordinate();
|
|
num_t dec_rad = pos.declination_rad();
|
|
num_t lat_rad = location.latitude_rad();
|
|
num_t num = cos(radians(zenith)) - (sin(dec_rad) * sin(lat_rad));
|
|
num_t denom = cos(dec_rad) * cos(lat_rad);
|
|
num_t cos_h = num / denom;
|
|
if (cos_h > 1 || cos_h < -1)
|
|
return {};
|
|
num_t hour_angle = degrees(acos(cos_h)) * 240;
|
|
if (rise)
|
|
hour_angle *= -1;
|
|
return hour_angle;
|
|
}
|
|
|
|
time::ESPTime local_event_(time::ESPTime date, int hour) const {
|
|
// input date should be in UTC, and hour/minute/second fields 0
|
|
num_t added_d = hour / 24.0 - location.longitude / 360;
|
|
num_t jd = julian_day(date) + added_d;
|
|
|
|
num_t eot = SunAtTime(jd).equation_of_time() * 240;
|
|
time_t new_timestamp = (time_t)(date.timestamp + added_d * 86400 - eot);
|
|
return time::ESPTime::from_epoch_utc(new_timestamp);
|
|
}
|
|
};
|
|
|
|
HorizontalCoordinate Sun::calc_coords_() {
|
|
SunAtLocation sun{location_};
|
|
Moment m{time_->utcnow()};
|
|
if (!m.dt.is_valid())
|
|
return HorizontalCoordinate{NAN, NAN};
|
|
|
|
// uncomment to print some debug output
|
|
/*
|
|
SunAtTime st{m.jde()};
|
|
st.debug();
|
|
*/
|
|
return sun.true_coordinate(m);
|
|
}
|
|
optional<time::ESPTime> Sun::calc_event_(bool rising, double zenith) {
|
|
SunAtLocation sun{location_};
|
|
auto now = this->time_->utcnow();
|
|
if (!now.is_valid())
|
|
return {};
|
|
// Calculate UT1 timestamp at 0h
|
|
auto today = now;
|
|
today.hour = today.minute = today.second = 0;
|
|
today.recalc_timestamp_utc();
|
|
|
|
auto it = sun.event(rising, today, zenith);
|
|
if (it.has_value() && it->timestamp < now.timestamp) {
|
|
// We're calculating *next* sunrise/sunset, but calculated event
|
|
// is today, so try again tomorrow
|
|
time_t new_timestamp = today.timestamp + 24 * 60 * 60;
|
|
today = time::ESPTime::from_epoch_utc(new_timestamp);
|
|
it = sun.event(rising, today, zenith);
|
|
}
|
|
return it;
|
|
}
|
|
|
|
optional<time::ESPTime> Sun::sunrise(double elevation) { return this->calc_event_(true, 90 - elevation); }
|
|
optional<time::ESPTime> Sun::sunset(double elevation) { return this->calc_event_(false, 90 - elevation); }
|
|
double Sun::elevation() { return this->calc_coords_().elevation; }
|
|
double Sun::azimuth() { return this->calc_coords_().azimuth; }
|
|
|
|
} // namespace sun
|
|
} // namespace esphome
|