esphome/esphome/core/helpers.cpp

753 lines
23 KiB
C++

#include "esphome/core/helpers.h"
#include "esphome/core/defines.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstring>
#ifdef USE_HOST
#ifndef _WIN32
#include <net/if.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#endif
#include <unistd.h>
#endif
#if defined(USE_ESP8266)
#include <osapi.h>
#include <user_interface.h>
// for xt_rsil()/xt_wsr_ps()
#include <Arduino.h>
#elif defined(USE_ESP32_FRAMEWORK_ARDUINO)
#include <Esp.h>
#elif defined(USE_ESP_IDF)
#include <freertos/FreeRTOS.h>
#include <freertos/portmacro.h>
#include "esp_mac.h"
#include "esp_random.h"
#include "esp_system.h"
#elif defined(USE_RP2040)
#if defined(USE_WIFI)
#include <WiFi.h>
#endif
#include <hardware/structs/rosc.h>
#include <hardware/sync.h>
#elif defined(USE_HOST)
#include <limits>
#include <random>
#endif
#ifdef USE_ESP32
#include "esp32/rom/crc.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#endif
#ifdef USE_LIBRETINY
#include <WiFi.h> // for macAddress()
#endif
namespace esphome {
static const char *const TAG = "helpers";
static const uint16_t CRC16_A001_LE_LUT_L[] = {0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241,
0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440};
static const uint16_t CRC16_A001_LE_LUT_H[] = {0x0000, 0xcc01, 0xd801, 0x1400, 0xf001, 0x3c00, 0x2800, 0xe401,
0xa001, 0x6c00, 0x7800, 0xb401, 0x5000, 0x9c01, 0x8801, 0x4400};
#ifndef USE_ESP32
static const uint16_t CRC16_8408_LE_LUT_L[] = {0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7};
static const uint16_t CRC16_8408_LE_LUT_H[] = {0x0000, 0x1081, 0x2102, 0x3183, 0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b, 0xc60c, 0xd68d, 0xe70e, 0xf78f};
static const uint16_t CRC16_1021_BE_LUT_L[] = {0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef};
static const uint16_t CRC16_1021_BE_LUT_H[] = {0x0000, 0x1231, 0x2462, 0x3653, 0x48c4, 0x5af5, 0x6ca6, 0x7e97,
0x9188, 0x83b9, 0xb5ea, 0xa7db, 0xd94c, 0xcb7d, 0xfd2e, 0xef1f};
#endif
// STL backports
#if _GLIBCXX_RELEASE < 8
std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
std::string to_string(float value) { return str_snprintf("%f", 32, value); }
std::string to_string(double value) { return str_snprintf("%f", 32, value); }
std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
#endif
// Mathematics
float lerp(float completion, float start, float end) { return start + (end - start) * completion; }
uint8_t crc8(const uint8_t *data, uint8_t len) {
uint8_t crc = 0;
while ((len--) != 0u) {
uint8_t inbyte = *data++;
for (uint8_t i = 8; i != 0u; i--) {
bool mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix)
crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
uint16_t crc16(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t reverse_poly, bool refin, bool refout) {
#ifdef USE_ESP32
if (reverse_poly == 0x8408) {
crc = crc16_le(refin ? crc : (crc ^ 0xffff), data, len);
return refout ? crc : (crc ^ 0xffff);
}
#endif
if (refin) {
crc ^= 0xffff;
}
#ifndef USE_ESP32
if (reverse_poly == 0x8408) {
while (len--) {
uint8_t combo = crc ^ (uint8_t) *data++;
crc = (crc >> 8) ^ CRC16_8408_LE_LUT_L[combo & 0x0F] ^ CRC16_8408_LE_LUT_H[combo >> 4];
}
} else
#endif
if (reverse_poly == 0xa001) {
while (len--) {
uint8_t combo = crc ^ (uint8_t) *data++;
crc = (crc >> 8) ^ CRC16_A001_LE_LUT_L[combo & 0x0F] ^ CRC16_A001_LE_LUT_H[combo >> 4];
}
} else {
while (len--) {
crc ^= *data++;
for (uint8_t i = 0; i < 8; i++) {
if (crc & 0x0001) {
crc = (crc >> 1) ^ reverse_poly;
} else {
crc >>= 1;
}
}
}
}
return refout ? (crc ^ 0xffff) : crc;
}
uint16_t crc16be(const uint8_t *data, uint16_t len, uint16_t crc, uint16_t poly, bool refin, bool refout) {
#ifdef USE_ESP32
if (poly == 0x1021) {
crc = crc16_be(refin ? crc : (crc ^ 0xffff), data, len);
return refout ? crc : (crc ^ 0xffff);
}
#endif
if (refin) {
crc ^= 0xffff;
}
#ifndef USE_ESP32
if (poly == 0x1021) {
while (len--) {
uint8_t combo = (crc >> 8) ^ *data++;
crc = (crc << 8) ^ CRC16_1021_BE_LUT_L[combo & 0x0F] ^ CRC16_1021_BE_LUT_H[combo >> 4];
}
} else {
#endif
while (len--) {
crc ^= (((uint16_t) *data++) << 8);
for (uint8_t i = 0; i < 8; i++) {
if (crc & 0x8000) {
crc = (crc << 1) ^ poly;
} else {
crc <<= 1;
}
}
}
#ifndef USE_ESP32
}
#endif
return refout ? (crc ^ 0xffff) : crc;
}
uint32_t fnv1_hash(const std::string &str) {
uint32_t hash = 2166136261UL;
for (char c : str) {
hash *= 16777619UL;
hash ^= c;
}
return hash;
}
uint32_t random_uint32() {
#ifdef USE_ESP32
return esp_random();
#elif defined(USE_ESP8266)
return os_random();
#elif defined(USE_RP2040)
uint32_t result = 0;
for (uint8_t i = 0; i < 32; i++) {
result <<= 1;
result |= rosc_hw->randombit;
}
return result;
#elif defined(USE_LIBRETINY)
return rand();
#elif defined(USE_HOST)
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_int_distribution<uint32_t> dist(0, std::numeric_limits<uint32_t>::max());
return dist(rng);
#else
#error "No random source available for this configuration."
#endif
}
float random_float() { return static_cast<float>(random_uint32()) / static_cast<float>(UINT32_MAX); }
bool random_bytes(uint8_t *data, size_t len) {
#ifdef USE_ESP32
esp_fill_random(data, len);
return true;
#elif defined(USE_ESP8266)
return os_get_random(data, len) == 0;
#elif defined(USE_RP2040)
while (len-- != 0) {
uint8_t result = 0;
for (uint8_t i = 0; i < 8; i++) {
result <<= 1;
result |= rosc_hw->randombit;
}
*data++ = result;
}
return true;
#elif defined(USE_LIBRETINY)
lt_rand_bytes(data, len);
return true;
#elif defined(USE_HOST)
FILE *fp = fopen("/dev/urandom", "r");
if (fp == nullptr) {
ESP_LOGW(TAG, "Could not open /dev/urandom, errno=%d", errno);
exit(1);
}
size_t read = fread(data, 1, len, fp);
if (read != len) {
ESP_LOGW(TAG, "Not enough data from /dev/urandom");
exit(1);
}
fclose(fp);
return true;
#else
#error "No random source available for this configuration."
#endif
}
// Strings
bool str_equals_case_insensitive(const std::string &a, const std::string &b) {
return strcasecmp(a.c_str(), b.c_str()) == 0;
}
bool str_startswith(const std::string &str, const std::string &start) { return str.rfind(start, 0) == 0; }
bool str_endswith(const std::string &str, const std::string &end) {
return str.rfind(end) == (str.size() - end.size());
}
std::string str_truncate(const std::string &str, size_t length) {
return str.length() > length ? str.substr(0, length) : str;
}
std::string str_until(const char *str, char ch) {
const char *pos = strchr(str, ch);
return pos == nullptr ? std::string(str) : std::string(str, pos - str);
}
std::string str_until(const std::string &str, char ch) { return str.substr(0, str.find(ch)); }
// wrapper around std::transform to run safely on functions from the ctype.h header
// see https://en.cppreference.com/w/cpp/string/byte/toupper#Notes
template<int (*fn)(int)> std::string str_ctype_transform(const std::string &str) {
std::string result;
result.resize(str.length());
std::transform(str.begin(), str.end(), result.begin(), [](unsigned char ch) { return fn(ch); });
return result;
}
std::string str_lower_case(const std::string &str) { return str_ctype_transform<std::tolower>(str); }
std::string str_upper_case(const std::string &str) { return str_ctype_transform<std::toupper>(str); }
std::string str_snake_case(const std::string &str) {
std::string result;
result.resize(str.length());
std::transform(str.begin(), str.end(), result.begin(), ::tolower);
std::replace(result.begin(), result.end(), ' ', '_');
return result;
}
std::string str_sanitize(const std::string &str) {
std::string out = str;
std::replace_if(
out.begin(), out.end(),
[](const char &c) {
return !(c == '-' || c == '_' || (c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
},
'_');
return out;
}
std::string str_snprintf(const char *fmt, size_t len, ...) {
std::string str;
va_list args;
str.resize(len);
va_start(args, len);
size_t out_length = vsnprintf(&str[0], len + 1, fmt, args);
va_end(args);
if (out_length < len)
str.resize(out_length);
return str;
}
std::string str_sprintf(const char *fmt, ...) {
std::string str;
va_list args;
va_start(args, fmt);
size_t length = vsnprintf(nullptr, 0, fmt, args);
va_end(args);
str.resize(length);
va_start(args, fmt);
vsnprintf(&str[0], length + 1, fmt, args);
va_end(args);
return str;
}
// Parsing & formatting
size_t parse_hex(const char *str, size_t length, uint8_t *data, size_t count) {
uint8_t val;
size_t chars = std::min(length, 2 * count);
for (size_t i = 2 * count - chars; i < 2 * count; i++, str++) {
if (*str >= '0' && *str <= '9') {
val = *str - '0';
} else if (*str >= 'A' && *str <= 'F') {
val = 10 + (*str - 'A');
} else if (*str >= 'a' && *str <= 'f') {
val = 10 + (*str - 'a');
} else {
return 0;
}
data[i >> 1] = !(i & 1) ? val << 4 : data[i >> 1] | val;
}
return chars;
}
static char format_hex_char(uint8_t v) { return v >= 10 ? 'a' + (v - 10) : '0' + v; }
std::string format_hex(const uint8_t *data, size_t length) {
std::string ret;
ret.resize(length * 2);
for (size_t i = 0; i < length; i++) {
ret[2 * i] = format_hex_char((data[i] & 0xF0) >> 4);
ret[2 * i + 1] = format_hex_char(data[i] & 0x0F);
}
return ret;
}
std::string format_hex(const std::vector<uint8_t> &data) { return format_hex(data.data(), data.size()); }
static char format_hex_pretty_char(uint8_t v) { return v >= 10 ? 'A' + (v - 10) : '0' + v; }
std::string format_hex_pretty(const uint8_t *data, size_t length) {
if (length == 0)
return "";
std::string ret;
ret.resize(3 * length - 1);
for (size_t i = 0; i < length; i++) {
ret[3 * i] = format_hex_pretty_char((data[i] & 0xF0) >> 4);
ret[3 * i + 1] = format_hex_pretty_char(data[i] & 0x0F);
if (i != length - 1)
ret[3 * i + 2] = '.';
}
if (length > 4)
return ret + " (" + to_string(length) + ")";
return ret;
}
std::string format_hex_pretty(const std::vector<uint8_t> &data) { return format_hex_pretty(data.data(), data.size()); }
std::string format_hex_pretty(const uint16_t *data, size_t length) {
if (length == 0)
return "";
std::string ret;
ret.resize(5 * length - 1);
for (size_t i = 0; i < length; i++) {
ret[5 * i] = format_hex_pretty_char((data[i] & 0xF000) >> 12);
ret[5 * i + 1] = format_hex_pretty_char((data[i] & 0x0F00) >> 8);
ret[5 * i + 2] = format_hex_pretty_char((data[i] & 0x00F0) >> 4);
ret[5 * i + 3] = format_hex_pretty_char(data[i] & 0x000F);
if (i != length - 1)
ret[5 * i + 2] = '.';
}
if (length > 4)
return ret + " (" + to_string(length) + ")";
return ret;
}
std::string format_hex_pretty(const std::vector<uint16_t> &data) { return format_hex_pretty(data.data(), data.size()); }
ParseOnOffState parse_on_off(const char *str, const char *on, const char *off) {
if (on == nullptr && strcasecmp(str, "on") == 0)
return PARSE_ON;
if (on != nullptr && strcasecmp(str, on) == 0)
return PARSE_ON;
if (off == nullptr && strcasecmp(str, "off") == 0)
return PARSE_OFF;
if (off != nullptr && strcasecmp(str, off) == 0)
return PARSE_OFF;
if (strcasecmp(str, "toggle") == 0)
return PARSE_TOGGLE;
return PARSE_NONE;
}
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals) {
if (accuracy_decimals < 0) {
auto multiplier = powf(10.0f, accuracy_decimals);
value = roundf(value * multiplier) / multiplier;
accuracy_decimals = 0;
}
char tmp[32]; // should be enough, but we should maybe improve this at some point.
snprintf(tmp, sizeof(tmp), "%.*f", accuracy_decimals, value);
return std::string(tmp);
}
int8_t step_to_accuracy_decimals(float step) {
// use printf %g to find number of digits based on temperature step
char buf[32];
snprintf(buf, sizeof buf, "%.5g", step);
std::string str{buf};
size_t dot_pos = str.find('.');
if (dot_pos == std::string::npos)
return 0;
return str.length() - dot_pos - 1;
}
static const std::string BASE64_CHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(char c) { return (isalnum(c) || (c == '+') || (c == '/')); }
std::string base64_encode(const std::vector<uint8_t> &buf) { return base64_encode(buf.data(), buf.size()); }
std::string base64_encode(const uint8_t *buf, size_t buf_len) {
std::string ret;
int i = 0;
int j = 0;
char char_array_3[3];
char char_array_4[4];
while (buf_len--) {
char_array_3[i++] = *(buf++);
if (i == 3) {
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (i = 0; (i < 4); i++)
ret += BASE64_CHARS[char_array_4[i]];
i = 0;
}
}
if (i) {
for (j = i; j < 3; j++)
char_array_3[j] = '\0';
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; (j < i + 1); j++)
ret += BASE64_CHARS[char_array_4[j]];
while ((i++ < 3))
ret += '=';
}
return ret;
}
size_t base64_decode(const std::string &encoded_string, uint8_t *buf, size_t buf_len) {
std::vector<uint8_t> decoded = base64_decode(encoded_string);
if (decoded.size() > buf_len) {
ESP_LOGW(TAG, "Base64 decode: buffer too small, truncating");
decoded.resize(buf_len);
}
memcpy(buf, decoded.data(), decoded.size());
return decoded.size();
}
std::vector<uint8_t> base64_decode(const std::string &encoded_string) {
int in_len = encoded_string.size();
int i = 0;
int j = 0;
int in = 0;
uint8_t char_array_4[4], char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in] != '=') && is_base64(encoded_string[in])) {
char_array_4[i++] = encoded_string[in];
in++;
if (i == 4) {
for (i = 0; i < 4; i++)
char_array_4[i] = BASE64_CHARS.find(char_array_4[i]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
ret.push_back(char_array_3[i]);
i = 0;
}
}
if (i) {
for (j = i; j < 4; j++)
char_array_4[j] = 0;
for (j = 0; j < 4; j++)
char_array_4[j] = BASE64_CHARS.find(char_array_4[j]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
ret.push_back(char_array_3[j]);
}
return ret;
}
// Colors
float gamma_correct(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, gamma);
}
float gamma_uncorrect(float value, float gamma) {
if (value <= 0.0f)
return 0.0f;
if (gamma <= 0.0f)
return value;
return powf(value, 1 / gamma);
}
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value) {
float max_color_value = std::max(std::max(red, green), blue);
float min_color_value = std::min(std::min(red, green), blue);
float delta = max_color_value - min_color_value;
if (delta == 0) {
hue = 0;
} else if (max_color_value == red) {
hue = int(fmod(((60 * ((green - blue) / delta)) + 360), 360));
} else if (max_color_value == green) {
hue = int(fmod(((60 * ((blue - red) / delta)) + 120), 360));
} else if (max_color_value == blue) {
hue = int(fmod(((60 * ((red - green) / delta)) + 240), 360));
}
if (max_color_value == 0) {
saturation = 0;
} else {
saturation = delta / max_color_value;
}
value = max_color_value;
}
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue) {
float chroma = value * saturation;
float hue_prime = fmod(hue / 60.0, 6);
float intermediate = chroma * (1 - fabs(fmod(hue_prime, 2) - 1));
float delta = value - chroma;
if (0 <= hue_prime && hue_prime < 1) {
red = chroma;
green = intermediate;
blue = 0;
} else if (1 <= hue_prime && hue_prime < 2) {
red = intermediate;
green = chroma;
blue = 0;
} else if (2 <= hue_prime && hue_prime < 3) {
red = 0;
green = chroma;
blue = intermediate;
} else if (3 <= hue_prime && hue_prime < 4) {
red = 0;
green = intermediate;
blue = chroma;
} else if (4 <= hue_prime && hue_prime < 5) {
red = intermediate;
green = 0;
blue = chroma;
} else if (5 <= hue_prime && hue_prime < 6) {
red = chroma;
green = 0;
blue = intermediate;
} else {
red = 0;
green = 0;
blue = 0;
}
red += delta;
green += delta;
blue += delta;
}
// System APIs
#if defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_HOST)
// ESP8266 doesn't have mutexes, but that shouldn't be an issue as it's single-core and non-preemptive OS.
Mutex::Mutex() {}
void Mutex::lock() {}
bool Mutex::try_lock() { return true; }
void Mutex::unlock() {}
#elif defined(USE_ESP32) || defined(USE_LIBRETINY)
Mutex::Mutex() { handle_ = xSemaphoreCreateMutex(); }
void Mutex::lock() { xSemaphoreTake(this->handle_, portMAX_DELAY); }
bool Mutex::try_lock() { return xSemaphoreTake(this->handle_, 0) == pdTRUE; }
void Mutex::unlock() { xSemaphoreGive(this->handle_); }
#endif
#if defined(USE_ESP8266)
IRAM_ATTR InterruptLock::InterruptLock() { state_ = xt_rsil(15); }
IRAM_ATTR InterruptLock::~InterruptLock() { xt_wsr_ps(state_); }
#elif defined(USE_ESP32) || defined(USE_LIBRETINY)
// only affects the executing core
// so should not be used as a mutex lock, only to get accurate timing
IRAM_ATTR InterruptLock::InterruptLock() { portDISABLE_INTERRUPTS(); }
IRAM_ATTR InterruptLock::~InterruptLock() { portENABLE_INTERRUPTS(); }
#elif defined(USE_RP2040)
IRAM_ATTR InterruptLock::InterruptLock() { state_ = save_and_disable_interrupts(); }
IRAM_ATTR InterruptLock::~InterruptLock() { restore_interrupts(state_); }
#endif
uint8_t HighFrequencyLoopRequester::num_requests = 0; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
void HighFrequencyLoopRequester::start() {
if (this->started_)
return;
num_requests++;
this->started_ = true;
}
void HighFrequencyLoopRequester::stop() {
if (!this->started_)
return;
num_requests--;
this->started_ = false;
}
bool HighFrequencyLoopRequester::is_high_frequency() { return num_requests > 0; }
void get_mac_address_raw(uint8_t *mac) { // NOLINT(readability-non-const-parameter)
#if defined(USE_HOST)
static const uint8_t esphome_host_mac_address[6] = USE_ESPHOME_HOST_MAC_ADDRESS;
memcpy(mac, esphome_host_mac_address, sizeof(esphome_host_mac_address));
#elif defined(USE_ESP32)
#if defined(CONFIG_SOC_IEEE802154_SUPPORTED)
// When CONFIG_SOC_IEEE802154_SUPPORTED is defined, esp_efuse_mac_get_default
// returns the 802.15.4 EUI-64 address, so we read directly from eFuse instead.
if (has_custom_mac_address()) {
esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
} else {
esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
}
#else
if (has_custom_mac_address()) {
esp_efuse_mac_get_custom(mac);
} else {
esp_efuse_mac_get_default(mac);
}
#endif
#elif defined(USE_ESP8266)
wifi_get_macaddr(STATION_IF, mac);
#elif defined(USE_RP2040) && defined(USE_WIFI)
WiFi.macAddress(mac);
#elif defined(USE_LIBRETINY)
WiFi.macAddress(mac);
#else
// this should be an error, but that messes with CI checks. #error No mac address method defined
#endif
}
std::string get_mac_address() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02x%02x%02x%02x%02x%02x", 12, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
std::string get_mac_address_pretty() {
uint8_t mac[6];
get_mac_address_raw(mac);
return str_snprintf("%02X:%02X:%02X:%02X:%02X:%02X", 17, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
#ifdef USE_ESP32
void set_mac_address(uint8_t *mac) { esp_base_mac_addr_set(mac); }
#endif
bool has_custom_mac_address() {
#if defined(USE_ESP32) && !defined(USE_ESP32_IGNORE_EFUSE_CUSTOM_MAC)
uint8_t mac[6];
// do not use 'esp_efuse_mac_get_custom(mac)' because it drops an error in the logs whenever it fails
#ifndef USE_ESP32_VARIANT_ESP32
return (esp_efuse_read_field_blob(ESP_EFUSE_USER_DATA_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac);
#else
return (esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48) == ESP_OK) && mac_address_is_valid(mac);
#endif
#else
return false;
#endif
}
bool mac_address_is_valid(const uint8_t *mac) {
bool is_all_zeros = true;
bool is_all_ones = true;
for (uint8_t i = 0; i < 6; i++) {
if (mac[i] != 0) {
is_all_zeros = false;
}
}
for (uint8_t i = 0; i < 6; i++) {
if (mac[i] != 0xFF) {
is_all_ones = false;
}
}
return !(is_all_zeros || is_all_ones);
}
void delay_microseconds_safe(uint32_t us) { // avoids CPU locks that could trigger WDT or affect WiFi/BT stability
uint32_t start = micros();
const uint32_t lag = 5000; // microseconds, specifies the maximum time for a CPU busy-loop.
// it must be larger than the worst-case duration of a delay(1) call (hardware tasks)
// 5ms is conservative, it could be reduced when exact BT/WiFi stack delays are known
if (us > lag) {
delay((us - lag) / 1000UL); // note: in disabled-interrupt contexts delay() won't actually sleep
while (micros() - start < us - lag)
delay(1); // in those cases, this loop allows to yield for BT/WiFi stack tasks
}
while (micros() - start < us) // fine delay the remaining usecs
;
}
} // namespace esphome