esphome/esphome/components/modbus_controller/modbus_controller.cpp

600 lines
23 KiB
C++

#include "modbus_controller.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
namespace esphome {
namespace modbus_controller {
static const char *const TAG = "modbus_controller";
void ModbusController::setup() {
// Modbus::setup();
this->create_register_ranges_();
}
/*
To work with the existing modbus class and avoid polling for responses a command queue is used.
send_next_command will submit the command at the top of the queue and set the corresponding callback
to handle the response from the device.
Once the response has been processed it is removed from the queue and the next command is sent
*/
bool ModbusController::send_next_command_() {
uint32_t last_send = millis() - this->last_command_timestamp_;
if ((last_send > this->command_throttle_) && !waiting_for_response() && !command_queue_.empty()) {
auto &command = command_queue_.front();
// remove from queue if command was sent too often
if (command->send_countdown < 1) {
ESP_LOGD(
TAG,
"Modbus command to device=%d register=0x%02X countdown=%d no response received - removed from send queue",
this->address_, command->register_address, command->send_countdown);
command_queue_.pop_front();
} else {
ESP_LOGV(TAG, "Sending next modbus command to device %d register 0x%02X count %d", this->address_,
command->register_address, command->register_count);
command->send();
this->last_command_timestamp_ = millis();
// remove from queue if no handler is defined
if (!command->on_data_func) {
command_queue_.pop_front();
}
}
}
return (!command_queue_.empty());
}
// Queue incoming response
void ModbusController::on_modbus_data(const std::vector<uint8_t> &data) {
auto &current_command = this->command_queue_.front();
if (current_command != nullptr) {
// Move the commandItem to the response queue
current_command->payload = data;
this->incoming_queue_.push(std::move(current_command));
ESP_LOGV(TAG, "Modbus response queued");
command_queue_.pop_front();
}
}
// Dispatch the response to the registered handler
void ModbusController::process_modbus_data_(const ModbusCommandItem *response) {
ESP_LOGV(TAG, "Process modbus response for address 0x%X size: %zu", response->register_address,
response->payload.size());
response->on_data_func(response->register_type, response->register_address, response->payload);
}
void ModbusController::on_modbus_error(uint8_t function_code, uint8_t exception_code) {
ESP_LOGE(TAG, "Modbus error function code: 0x%X exception: %d ", function_code, exception_code);
// Remove pending command waiting for a response
auto &current_command = this->command_queue_.front();
if (current_command != nullptr) {
ESP_LOGE(TAG,
"Modbus error - last command: function code=0x%X register adddress = 0x%X "
"registers count=%d "
"payload size=%zu",
function_code, current_command->register_address, current_command->register_count,
current_command->payload.size());
command_queue_.pop_front();
}
}
SensorSet ModbusController::find_sensors_(ModbusRegisterType register_type, uint16_t start_address) const {
auto reg_it = find_if(begin(register_ranges_), end(register_ranges_), [=](RegisterRange const &r) {
return (r.start_address == start_address && r.register_type == register_type);
});
if (reg_it == register_ranges_.end()) {
ESP_LOGE(TAG, "No matching range for sensor found - start_address : 0x%X", start_address);
} else {
return reg_it->sensors;
}
// not found
return {};
}
void ModbusController::on_register_data(ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
ESP_LOGV(TAG, "data for register address : 0x%X : ", start_address);
// loop through all sensors with the same start address
auto sensors = find_sensors_(register_type, start_address);
for (auto sensor : sensors) {
sensor->parse_and_publish(data);
}
}
void ModbusController::queue_command(const ModbusCommandItem &command) {
// check if this commmand is already qeued.
// not very effective but the queue is never really large
for (auto &item : command_queue_) {
if (item->register_address == command.register_address && item->register_count == command.register_count &&
item->register_type == command.register_type && item->function_code == command.function_code) {
ESP_LOGW(TAG, "Duplicate modbus command found");
// update the payload of the queued command
// replaces a previous command
item->payload = command.payload;
return;
}
}
command_queue_.push_back(make_unique<ModbusCommandItem>(command));
}
void ModbusController::update_range_(RegisterRange &r) {
ESP_LOGV(TAG, "Range : %X Size: %x (%d) skip: %d", r.start_address, r.register_count, (int) r.register_type,
r.skip_updates_counter);
if (r.skip_updates_counter == 0) {
// if a custom command is used the user supplied custom_data is only available in the SensorItem.
if (r.register_type == ModbusRegisterType::CUSTOM) {
auto sensors = this->find_sensors_(r.register_type, r.start_address);
if (!sensors.empty()) {
auto sensor = sensors.cbegin();
auto command_item = ModbusCommandItem::create_custom_command(
this, (*sensor)->custom_data,
[this](ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data) {
this->on_register_data(ModbusRegisterType::CUSTOM, start_address, data);
});
command_item.register_address = (*sensor)->start_address;
command_item.register_count = (*sensor)->register_count;
command_item.function_code = ModbusFunctionCode::CUSTOM;
queue_command(command_item);
}
} else {
queue_command(ModbusCommandItem::create_read_command(this, r.register_type, r.start_address, r.register_count));
}
r.skip_updates_counter = r.skip_updates; // reset counter to config value
} else {
r.skip_updates_counter--;
}
}
//
// Queue the modbus requests to be send.
// Once we get a response to the command it is removed from the queue and the next command is send
//
void ModbusController::update() {
if (!command_queue_.empty()) {
ESP_LOGV(TAG, "%zu modbus commands already in queue", command_queue_.size());
} else {
ESP_LOGV(TAG, "Updating modbus component");
}
for (auto &r : this->register_ranges_) {
ESP_LOGVV(TAG, "Updating range 0x%X", r.start_address);
update_range_(r);
}
}
// walk through the sensors and determine the register ranges to read
size_t ModbusController::create_register_ranges_() {
register_ranges_.clear();
if (sensorset_.empty()) {
ESP_LOGW(TAG, "No sensors registered");
return 0;
}
// iterator is sorted see SensorItemsComparator for details
auto ix = sensorset_.begin();
RegisterRange r = {};
uint8_t buffer_offset = 0;
SensorItem *prev = nullptr;
while (ix != sensorset_.end()) {
SensorItem *curr = *ix;
ESP_LOGV(TAG, "Register: 0x%X %d %d %d offset=%u skip=%u addr=%p", curr->start_address, curr->register_count,
curr->offset, curr->get_register_size(), curr->offset, curr->skip_updates, curr);
if (r.register_count == 0) {
// this is the first register in range
r.start_address = curr->start_address;
r.register_count = curr->register_count;
r.register_type = curr->register_type;
r.sensors.insert(curr);
r.skip_updates = curr->skip_updates;
r.skip_updates_counter = 0;
buffer_offset = curr->get_register_size();
ESP_LOGV(TAG, "Started new range");
} else {
// this is not the first register in range so it might be possible
// to reuse the last register or extend the current range
if (!curr->force_new_range && r.register_type == curr->register_type &&
curr->register_type != ModbusRegisterType::CUSTOM) {
if (curr->start_address == (r.start_address + r.register_count - prev->register_count) &&
curr->register_count == prev->register_count && curr->get_register_size() == prev->get_register_size()) {
// this register can re-use the data from the previous register
// remove this sensore because start_address is changed (sort-order)
ix = sensorset_.erase(ix);
curr->start_address = r.start_address;
curr->offset += prev->offset;
sensorset_.insert(curr);
// move iterator backwards because it will be incremented later
ix--;
ESP_LOGV(TAG, "Re-use previous register - change to register: 0x%X %d offset=%u", curr->start_address,
curr->register_count, curr->offset);
} else if (curr->start_address == (r.start_address + r.register_count)) {
// this register can extend the current range
// remove this sensore because start_address is changed (sort-order)
ix = sensorset_.erase(ix);
curr->start_address = r.start_address;
curr->offset += buffer_offset;
buffer_offset += curr->get_register_size();
r.register_count += curr->register_count;
sensorset_.insert(curr);
// move iterator backwards because it will be incremented later
ix--;
ESP_LOGV(TAG, "Extend range - change to register: 0x%X %d offset=%u", curr->start_address,
curr->register_count, curr->offset);
}
}
}
if (curr->start_address == r.start_address) {
// use the lowest non zero value for the whole range
// Because zero is the default value for skip_updates it is excluded from getting the min value.
if (curr->skip_updates != 0) {
if (r.skip_updates != 0) {
r.skip_updates = std::min(r.skip_updates, curr->skip_updates);
} else {
r.skip_updates = curr->skip_updates;
}
}
// add sensor to this range
r.sensors.insert(curr);
ix++;
} else {
ESP_LOGV(TAG, "Add range 0x%X %d skip:%d", r.start_address, r.register_count, r.skip_updates);
register_ranges_.push_back(r);
r = {};
buffer_offset = 0;
// do not increment the iterator here because the current sensor has to be re-evaluated
}
prev = curr;
}
if (r.register_count > 0) {
// Add the last range
ESP_LOGV(TAG, "Add last range 0x%X %d skip:%d", r.start_address, r.register_count, r.skip_updates);
register_ranges_.push_back(r);
}
return register_ranges_.size();
}
void ModbusController::dump_config() {
ESP_LOGCONFIG(TAG, "ModbusController:");
ESP_LOGCONFIG(TAG, " Address: 0x%02X", this->address_);
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE
ESP_LOGCONFIG(TAG, "sensormap");
for (auto &it : sensorset_) {
ESP_LOGCONFIG(TAG, " Sensor type=%zu start=0x%X offset=0x%X count=%d size=%d",
static_cast<uint8_t>(it->register_type), it->start_address, it->offset, it->register_count,
it->get_register_size());
}
ESP_LOGCONFIG(TAG, "ranges");
for (auto &it : register_ranges_) {
ESP_LOGCONFIG(TAG, " Range type=%zu start=0x%X count=%d skip_updates=%d", static_cast<uint8_t>(it.register_type),
it.start_address, it.register_count, it.skip_updates);
}
#endif
}
void ModbusController::loop() {
// Incoming data to process?
if (!incoming_queue_.empty()) {
auto &message = incoming_queue_.front();
if (message != nullptr)
process_modbus_data_(message.get());
incoming_queue_.pop();
} else {
// all messages processed send pending commmands
send_next_command_();
}
}
void ModbusController::on_write_register_response(ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
ESP_LOGV(TAG, "Command ACK 0x%X %d ", get_data<uint16_t>(data, 0), get_data<int16_t>(data, 1));
}
void ModbusController::dump_sensors_() {
ESP_LOGV(TAG, "sensors");
for (auto &it : sensorset_) {
ESP_LOGV(TAG, " Sensor start=0x%X count=%d size=%d offset=%d", it->start_address, it->register_count,
it->get_register_size(), it->offset);
}
}
ModbusCommandItem ModbusCommandItem::create_read_command(
ModbusController *modbusdevice, ModbusRegisterType register_type, uint16_t start_address, uint16_t register_count,
std::function<void(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data)>
&&handler) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = register_type;
cmd.function_code = modbus_register_read_function(register_type);
cmd.register_address = start_address;
cmd.register_count = register_count;
cmd.on_data_func = std::move(handler);
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_read_command(ModbusController *modbusdevice,
ModbusRegisterType register_type, uint16_t start_address,
uint16_t register_count) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = register_type;
cmd.function_code = modbus_register_read_function(register_type);
cmd.register_address = start_address;
cmd.register_count = register_count;
cmd.on_data_func = [modbusdevice](ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
modbusdevice->on_register_data(register_type, start_address, data);
};
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_write_multiple_command(ModbusController *modbusdevice,
uint16_t start_address, uint16_t register_count,
const std::vector<uint16_t> &values) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = ModbusRegisterType::HOLDING;
cmd.function_code = ModbusFunctionCode::WRITE_MULTIPLE_REGISTERS;
cmd.register_address = start_address;
cmd.register_count = register_count;
cmd.on_data_func = [modbusdevice, cmd](ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
modbusdevice->on_write_register_response(cmd.register_type, start_address, data);
};
for (auto v : values) {
cmd.payload.push_back((v / 256) & 0xFF);
cmd.payload.push_back(v & 0xFF);
}
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_write_single_coil(ModbusController *modbusdevice, uint16_t address,
bool value) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = ModbusRegisterType::COIL;
cmd.function_code = ModbusFunctionCode::WRITE_SINGLE_COIL;
cmd.register_address = address;
cmd.register_count = 1;
cmd.on_data_func = [modbusdevice, cmd](ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
modbusdevice->on_write_register_response(cmd.register_type, start_address, data);
};
cmd.payload.push_back(value ? 0xFF : 0);
cmd.payload.push_back(0);
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_write_multiple_coils(ModbusController *modbusdevice, uint16_t start_address,
const std::vector<bool> &values) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = ModbusRegisterType::COIL;
cmd.function_code = ModbusFunctionCode::WRITE_MULTIPLE_COILS;
cmd.register_address = start_address;
cmd.register_count = values.size();
cmd.on_data_func = [modbusdevice, cmd](ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
modbusdevice->on_write_register_response(cmd.register_type, start_address, data);
};
uint8_t bitmask = 0;
int bitcounter = 0;
for (auto coil : values) {
if (coil) {
bitmask |= (1 << bitcounter);
}
bitcounter++;
if (bitcounter % 8 == 0) {
cmd.payload.push_back(bitmask);
bitmask = 0;
}
}
// add remaining bits
if (bitcounter % 8) {
cmd.payload.push_back(bitmask);
}
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_write_single_command(ModbusController *modbusdevice, uint16_t start_address,
int16_t value) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.register_type = ModbusRegisterType::HOLDING;
cmd.function_code = ModbusFunctionCode::WRITE_SINGLE_REGISTER;
cmd.register_address = start_address;
cmd.register_count = 1; // not used here anyways
cmd.on_data_func = [modbusdevice, cmd](ModbusRegisterType register_type, uint16_t start_address,
const std::vector<uint8_t> &data) {
modbusdevice->on_write_register_response(cmd.register_type, start_address, data);
};
cmd.payload.push_back((value / 256) & 0xFF);
cmd.payload.push_back((value % 256) & 0xFF);
return cmd;
}
ModbusCommandItem ModbusCommandItem::create_custom_command(
ModbusController *modbusdevice, const std::vector<uint8_t> &values,
std::function<void(ModbusRegisterType register_type, uint16_t start_address, const std::vector<uint8_t> &data)>
&&handler) {
ModbusCommandItem cmd;
cmd.modbusdevice = modbusdevice;
cmd.function_code = ModbusFunctionCode::CUSTOM;
if (handler == nullptr) {
cmd.on_data_func = [](ModbusRegisterType, uint16_t, const std::vector<uint8_t> &data) {
ESP_LOGI(TAG, "Custom Command sent");
};
} else {
cmd.on_data_func = handler;
}
cmd.payload = values;
return cmd;
}
bool ModbusCommandItem::send() {
if (this->function_code != ModbusFunctionCode::CUSTOM) {
modbusdevice->send(uint8_t(this->function_code), this->register_address, this->register_count, this->payload.size(),
this->payload.empty() ? nullptr : &this->payload[0]);
} else {
modbusdevice->send_raw(this->payload);
}
ESP_LOGV(TAG, "Command sent %d 0x%X %d", uint8_t(this->function_code), this->register_address, this->register_count);
send_countdown--;
return true;
}
std::vector<uint16_t> float_to_payload(float value, SensorValueType value_type) {
union {
float float_value;
uint32_t raw;
} raw_to_float;
std::vector<uint16_t> data;
int32_t val;
switch (value_type) {
case SensorValueType::U_WORD:
case SensorValueType::S_WORD:
// cast truncates the float do some rounding here
data.push_back(lroundf(value) & 0xFFFF);
break;
case SensorValueType::U_DWORD:
case SensorValueType::S_DWORD:
val = lroundf(value);
data.push_back((val & 0xFFFF0000) >> 16);
data.push_back(val & 0xFFFF);
break;
case SensorValueType::U_DWORD_R:
case SensorValueType::S_DWORD_R:
val = lroundf(value);
data.push_back(val & 0xFFFF);
data.push_back((val & 0xFFFF0000) >> 16);
break;
case SensorValueType::FP32:
raw_to_float.float_value = value;
data.push_back((raw_to_float.raw & 0xFFFF0000) >> 16);
data.push_back(raw_to_float.raw & 0xFFFF);
break;
case SensorValueType::FP32_R:
raw_to_float.float_value = value;
data.push_back(raw_to_float.raw & 0xFFFF);
data.push_back((raw_to_float.raw & 0xFFFF0000) >> 16);
break;
default:
ESP_LOGE(TAG, "Invalid data type for modbus float to payload conversation");
break;
}
return data;
}
float payload_to_float(const std::vector<uint8_t> &data, SensorValueType sensor_value_type, uint8_t offset,
uint32_t bitmask) {
union {
float float_value;
uint32_t raw;
} raw_to_float;
int64_t value = 0; // int64_t because it can hold signed and unsigned 32 bits
float result = NAN;
switch (sensor_value_type) {
case SensorValueType::U_WORD:
value = mask_and_shift_by_rightbit(get_data<uint16_t>(data, offset), bitmask); // default is 0xFFFF ;
result = static_cast<float>(value);
break;
case SensorValueType::U_DWORD:
value = get_data<uint32_t>(data, offset);
value = mask_and_shift_by_rightbit((uint32_t) value, bitmask);
result = static_cast<float>(value);
break;
case SensorValueType::U_DWORD_R:
value = get_data<uint32_t>(data, offset);
value = static_cast<uint32_t>(value & 0xFFFF) << 16 | (value & 0xFFFF0000) >> 16;
value = mask_and_shift_by_rightbit((uint32_t) value, bitmask);
result = static_cast<float>(value);
break;
case SensorValueType::S_WORD:
value = mask_and_shift_by_rightbit(get_data<int16_t>(data, offset),
bitmask); // default is 0xFFFF ;
result = static_cast<float>(value);
break;
case SensorValueType::S_DWORD:
value = mask_and_shift_by_rightbit(get_data<int32_t>(data, offset), bitmask);
result = static_cast<float>(value);
break;
case SensorValueType::S_DWORD_R: {
value = get_data<uint32_t>(data, offset);
// Currently the high word is at the low position
// the sign bit is therefore at low before the switch
uint32_t sign_bit = (value & 0x8000) << 16;
value = mask_and_shift_by_rightbit(
static_cast<int32_t>(((value & 0x7FFF) << 16 | (value & 0xFFFF0000) >> 16) | sign_bit), bitmask);
result = static_cast<float>(value);
} break;
case SensorValueType::U_QWORD:
// Ignore bitmask for U_QWORD
value = get_data<uint64_t>(data, offset);
result = static_cast<float>(value);
break;
case SensorValueType::S_QWORD:
// Ignore bitmask for S_QWORD
value = get_data<int64_t>(data, offset);
result = static_cast<float>(value);
break;
case SensorValueType::U_QWORD_R:
// Ignore bitmask for U_QWORD
value = get_data<uint64_t>(data, offset);
value = static_cast<uint64_t>(value & 0xFFFF) << 48 | (value & 0xFFFF000000000000) >> 48 |
static_cast<uint64_t>(value & 0xFFFF0000) << 32 | (value & 0x0000FFFF00000000) >> 32 |
static_cast<uint64_t>(value & 0xFFFF00000000) << 16 | (value & 0x00000000FFFF0000) >> 16;
result = static_cast<float>(value);
break;
case SensorValueType::S_QWORD_R:
// Ignore bitmask for S_QWORD
value = get_data<int64_t>(data, offset);
result = static_cast<float>(value);
break;
case SensorValueType::FP32:
raw_to_float.raw = get_data<uint32_t>(data, offset);
ESP_LOGD(TAG, "FP32 = 0x%08X => %f", raw_to_float.raw, raw_to_float.float_value);
result = raw_to_float.float_value;
break;
case SensorValueType::FP32_R: {
auto tmp = get_data<uint32_t>(data, offset);
raw_to_float.raw = static_cast<uint32_t>(tmp & 0xFFFF) << 16 | (tmp & 0xFFFF0000) >> 16;
ESP_LOGD(TAG, "FP32_R = 0x%08X => %f", raw_to_float.raw, raw_to_float.float_value);
result = raw_to_float.float_value;
} break;
case SensorValueType::RAW:
result = NAN;
break;
default:
break;
}
return result;
}
} // namespace modbus_controller
} // namespace esphome