esphome/esphome/components/pid/pid_controller.cpp
2022-11-30 10:58:43 +13:00

124 lines
3.4 KiB
C++

#include "pid_controller.h"
namespace esphome {
namespace pid {
float PIDController::update(float setpoint, float process_value) {
// e(t) ... error at timestamp t
// r(t) ... setpoint
// y(t) ... process value (sensor reading)
// u(t) ... output value
dt_ = calculate_relative_time_();
// e(t) := r(t) - y(t)
error_ = setpoint - process_value;
calculate_proportional_term_();
calculate_integral_term_();
calculate_derivative_term_();
// u(t) := p(t) + i(t) + d(t)
float output = proportional_term_ + integral_term_ + derivative_term_;
// smooth/sample the output
int samples = in_deadband() ? deadband_output_samples_ : output_samples_;
return weighted_average_(output_list_, output, samples);
}
bool PIDController::in_deadband() {
// return (fabs(error) < deadband_threshold);
float err = -error_;
return ((err > 0 && err < threshold_high_) || (err < 0 && err > threshold_low_));
}
void PIDController::calculate_proportional_term_() {
// p(t) := K_p * e(t)
proportional_term_ = kp_ * error_;
// set dead-zone to -X to +X
if (in_deadband()) {
// shallow the proportional_term in the deadband by the pdm
proportional_term_ *= kp_multiplier_;
} else {
// pdm_offset prevents a jump when leaving the deadband
float threshold = (error_ < 0) ? threshold_high_ : threshold_low_;
float pdm_offset = (threshold - (kp_multiplier_ * threshold)) * kp_;
proportional_term_ += pdm_offset;
}
}
void PIDController::calculate_integral_term_() {
// i(t) := K_i * \int_{0}^{t} e(t) dt
float new_integral = error_ * dt_ * ki_;
if (in_deadband()) {
// shallow the integral when in the deadband
accumulated_integral_ += new_integral * ki_multiplier_;
} else {
accumulated_integral_ += new_integral;
}
// constrain accumulated integral value
if (!std::isnan(min_integral_) && accumulated_integral_ < min_integral_)
accumulated_integral_ = min_integral_;
if (!std::isnan(max_integral_) && accumulated_integral_ > max_integral_)
accumulated_integral_ = max_integral_;
integral_term_ = accumulated_integral_;
}
void PIDController::calculate_derivative_term_() {
// derivative_term_
// d(t) := K_d * de(t)/dt
float derivative = 0.0f;
if (dt_ != 0.0f)
derivative = (error_ - previous_error_) / dt_;
previous_error_ = error_;
// smooth the derivative samples
derivative = weighted_average_(derivative_list_, derivative, derivative_samples_);
derivative_term_ = kd_ * derivative;
if (in_deadband()) {
// shallow the derivative when in the deadband
derivative_term_ *= kd_multiplier_;
}
}
float PIDController::weighted_average_(std::deque<float> &list, float new_value, int samples) {
// if only 1 sample needed, clear the list and return
if (samples == 1) {
list.clear();
return new_value;
}
// add the new item to the list
list.push_front(new_value);
// keep only 'samples' readings, by popping off the back of the list
while (list.size() > samples)
list.pop_back();
// calculate and return the average of all values in the list
float sum = 0;
for (auto &elem : list)
sum += elem;
return sum / list.size();
}
float PIDController::calculate_relative_time_() {
uint32_t now = millis();
uint32_t dt = now - this->last_time_;
if (last_time_ == 0) {
last_time_ = now;
return 0.0f;
}
last_time_ = now;
return dt / 1000.0f;
}
} // namespace pid
} // namespace esphome