esphome/esphome/core/scheduler.cpp
Oxan van Leeuwen 80d03a631e
Force braces around multi-line statements (#3094)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2022-01-25 08:56:36 +13:00

317 lines
10 KiB
C++

#include "scheduler.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include "esphome/core/hal.h"
#include <algorithm>
namespace esphome {
static const char *const TAG = "scheduler";
static const uint32_t MAX_LOGICALLY_DELETED_ITEMS = 10;
// Uncomment to debug scheduler
// #define ESPHOME_DEBUG_SCHEDULER
void HOT Scheduler::set_timeout(Component *component, const std::string &name, uint32_t timeout,
std::function<void()> &&func) {
const uint32_t now = this->millis_();
if (!name.empty())
this->cancel_timeout(component, name);
if (timeout == SCHEDULER_DONT_RUN)
return;
ESP_LOGVV(TAG, "set_timeout(name='%s', timeout=%u)", name.c_str(), timeout);
auto item = make_unique<SchedulerItem>();
item->component = component;
item->name = name;
item->type = SchedulerItem::TIMEOUT;
item->timeout = timeout;
item->last_execution = now;
item->last_execution_major = this->millis_major_;
item->void_callback = std::move(func);
item->remove = false;
this->push_(std::move(item));
}
bool HOT Scheduler::cancel_timeout(Component *component, const std::string &name) {
return this->cancel_item_(component, name, SchedulerItem::TIMEOUT);
}
void HOT Scheduler::set_interval(Component *component, const std::string &name, uint32_t interval,
std::function<void()> &&func) {
const uint32_t now = this->millis_();
if (!name.empty())
this->cancel_interval(component, name);
if (interval == SCHEDULER_DONT_RUN)
return;
// only put offset in lower half
uint32_t offset = 0;
if (interval != 0)
offset = (random_uint32() % interval) / 2;
ESP_LOGVV(TAG, "set_interval(name='%s', interval=%u, offset=%u)", name.c_str(), interval, offset);
auto item = make_unique<SchedulerItem>();
item->component = component;
item->name = name;
item->type = SchedulerItem::INTERVAL;
item->interval = interval;
item->last_execution = now - offset - interval;
item->last_execution_major = this->millis_major_;
if (item->last_execution > now)
item->last_execution_major--;
item->void_callback = std::move(func);
item->remove = false;
this->push_(std::move(item));
}
bool HOT Scheduler::cancel_interval(Component *component, const std::string &name) {
return this->cancel_item_(component, name, SchedulerItem::INTERVAL);
}
void HOT Scheduler::set_retry(Component *component, const std::string &name, uint32_t initial_wait_time,
uint8_t max_attempts, std::function<RetryResult()> &&func,
float backoff_increase_factor) {
const uint32_t now = this->millis_();
if (!name.empty())
this->cancel_retry(component, name);
if (initial_wait_time == SCHEDULER_DONT_RUN)
return;
ESP_LOGVV(TAG, "set_retry(name='%s', initial_wait_time=%u,max_attempts=%u, backoff_factor=%0.1f)", name.c_str(),
initial_wait_time, max_attempts, backoff_increase_factor);
auto item = make_unique<SchedulerItem>();
item->component = component;
item->name = name;
item->type = SchedulerItem::RETRY;
item->interval = initial_wait_time;
item->retry_countdown = max_attempts;
item->backoff_multiplier = backoff_increase_factor;
item->last_execution = now - initial_wait_time;
item->last_execution_major = this->millis_major_;
if (item->last_execution > now)
item->last_execution_major--;
item->retry_callback = std::move(func);
item->remove = false;
this->push_(std::move(item));
}
bool HOT Scheduler::cancel_retry(Component *component, const std::string &name) {
return this->cancel_item_(component, name, SchedulerItem::RETRY);
}
optional<uint32_t> HOT Scheduler::next_schedule_in() {
if (this->empty_())
return {};
auto &item = this->items_[0];
const uint32_t now = this->millis_();
uint32_t next_time = item->last_execution + item->interval;
if (next_time < now)
return 0;
return next_time - now;
}
void IRAM_ATTR HOT Scheduler::call() {
const uint32_t now = this->millis_();
this->process_to_add();
#ifdef ESPHOME_DEBUG_SCHEDULER
static uint32_t last_print = 0;
if (now - last_print > 2000) {
last_print = now;
std::vector<std::unique_ptr<SchedulerItem>> old_items;
ESP_LOGVV(TAG, "Items: count=%u, now=%u", this->items_.size(), now);
while (!this->empty_()) {
auto item = std::move(this->items_[0]);
ESP_LOGVV(TAG, " %s '%s' interval=%u last_execution=%u (%u) next=%u (%u)", item->get_type_str(),
item->name.c_str(), item->interval, item->last_execution, item->last_execution_major,
item->next_execution(), item->next_execution_major());
this->pop_raw_();
old_items.push_back(std::move(item));
}
ESP_LOGVV(TAG, "\n");
this->items_ = std::move(old_items);
}
#endif // ESPHOME_DEBUG_SCHEDULER
auto to_remove_was = to_remove_;
auto items_was = items_.size();
// If we have too many items to remove
if (to_remove_ > MAX_LOGICALLY_DELETED_ITEMS) {
std::vector<std::unique_ptr<SchedulerItem>> valid_items;
while (!this->empty_()) {
auto item = std::move(this->items_[0]);
this->pop_raw_();
valid_items.push_back(std::move(item));
}
this->items_ = std::move(valid_items);
// The following should not happen unless I'm missing something
if (to_remove_ != 0) {
ESP_LOGW(TAG, "to_remove_ was %u now: %u items where %zu now %zu. Please report this", to_remove_was, to_remove_,
items_was, items_.size());
to_remove_ = 0;
}
}
while (!this->empty_()) {
RetryResult retry_result = RETRY;
// use scoping to indicate visibility of `item` variable
{
// Don't copy-by value yet
auto &item = this->items_[0];
if ((now - item->last_execution) < item->interval) {
// Not reached timeout yet, done for this call
break;
}
uint8_t major = item->next_execution_major();
if (this->millis_major_ - major > 1)
break;
// Don't run on failed components
if (item->component != nullptr && item->component->is_failed()) {
this->pop_raw_();
continue;
}
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
ESP_LOGVV(TAG, "Running %s '%s' with interval=%u last_execution=%u (now=%u)", item->get_type_str(),
item->name.c_str(), item->interval, item->last_execution, now);
#endif
// Warning: During callback(), a lot of stuff can happen, including:
// - timeouts/intervals get added, potentially invalidating vector pointers
// - timeouts/intervals get cancelled
{
WarnIfComponentBlockingGuard guard{item->component};
if (item->type == SchedulerItem::RETRY) {
retry_result = item->retry_callback();
} else {
item->void_callback();
}
}
}
{
// new scope, item from before might have been moved in the vector
auto item = std::move(this->items_[0]);
// Only pop after function call, this ensures we were reachable
// during the function call and know if we were cancelled.
this->pop_raw_();
if (item->remove) {
// We were removed/cancelled in the function call, stop
to_remove_--;
continue;
}
if (item->type == SchedulerItem::INTERVAL ||
(item->type == SchedulerItem::RETRY && (--item->retry_countdown > 0 && retry_result != RetryResult::DONE))) {
if (item->interval != 0) {
const uint32_t before = item->last_execution;
const uint32_t amount = (now - item->last_execution) / item->interval;
item->last_execution += amount * item->interval;
if (item->last_execution < before)
item->last_execution_major++;
if (item->type == SchedulerItem::RETRY)
item->interval *= item->backoff_multiplier;
}
this->push_(std::move(item));
}
}
}
this->process_to_add();
}
void HOT Scheduler::process_to_add() {
for (auto &it : this->to_add_) {
if (it->remove) {
continue;
}
this->items_.push_back(std::move(it));
std::push_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp);
}
this->to_add_.clear();
}
void HOT Scheduler::cleanup_() {
while (!this->items_.empty()) {
auto &item = this->items_[0];
if (!item->remove)
return;
to_remove_--;
this->pop_raw_();
}
}
void HOT Scheduler::pop_raw_() {
std::pop_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp);
this->items_.pop_back();
}
void HOT Scheduler::push_(std::unique_ptr<Scheduler::SchedulerItem> item) { this->to_add_.push_back(std::move(item)); }
bool HOT Scheduler::cancel_item_(Component *component, const std::string &name, Scheduler::SchedulerItem::Type type) {
bool ret = false;
for (auto &it : this->items_) {
if (it->component == component && it->name == name && it->type == type && !it->remove) {
to_remove_++;
it->remove = true;
ret = true;
}
}
for (auto &it : this->to_add_) {
if (it->component == component && it->name == name && it->type == type) {
it->remove = true;
ret = true;
}
}
return ret;
}
uint32_t Scheduler::millis_() {
const uint32_t now = millis();
if (now < this->last_millis_) {
ESP_LOGD(TAG, "Incrementing scheduler major");
this->millis_major_++;
}
this->last_millis_ = now;
return now;
}
bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a,
const std::unique_ptr<SchedulerItem> &b) {
// min-heap
// return true if *a* will happen after *b*
uint32_t a_next_exec = a->next_execution();
uint8_t a_next_exec_major = a->next_execution_major();
uint32_t b_next_exec = b->next_execution();
uint8_t b_next_exec_major = b->next_execution_major();
if (a_next_exec_major != b_next_exec_major) {
// The "major" calculation is quite complicated.
// Basically, we need to check if the major value lies in the future or
//
// Here are some cases to think about:
// Format: a_major,b_major -> expected result (a-b, b-a)
// a=255,b=0 -> false (255, 1)
// a=0,b=1 -> false (255, 1)
// a=1,b=0 -> true (1, 255)
// a=0,b=255 -> true (1, 255)
uint8_t diff1 = a_next_exec_major - b_next_exec_major;
uint8_t diff2 = b_next_exec_major - a_next_exec_major;
return diff1 < diff2;
}
return a_next_exec > b_next_exec;
}
} // namespace esphome