mirror of
https://github.com/esphome/esphome.git
synced 2024-12-02 19:54:14 +01:00
340 lines
10 KiB
C++
340 lines
10 KiB
C++
#include "cs5460a.h"
|
|
#include "esphome/core/log.h"
|
|
|
|
namespace esphome {
|
|
namespace cs5460a {
|
|
|
|
static const char *const TAG = "cs5460a";
|
|
|
|
void CS5460AComponent::write_register_(enum CS5460ARegister addr, uint32_t value) {
|
|
this->write_byte(CMD_WRITE | (addr << 1));
|
|
this->write_byte(value >> 16);
|
|
this->write_byte(value >> 8);
|
|
this->write_byte(value >> 0);
|
|
}
|
|
|
|
uint32_t CS5460AComponent::read_register_(uint8_t addr) {
|
|
uint32_t value;
|
|
|
|
this->write_byte(CMD_READ | (addr << 1));
|
|
value = (uint32_t) this->transfer_byte(CMD_SYNC0) << 16;
|
|
value |= (uint32_t) this->transfer_byte(CMD_SYNC0) << 8;
|
|
value |= this->transfer_byte(CMD_SYNC0) << 0;
|
|
|
|
return value;
|
|
}
|
|
|
|
bool CS5460AComponent::softreset_() {
|
|
uint32_t pc = ((uint8_t) phase_offset_ & 0x3f) | (phase_offset_ < 0 ? 0x40 : 0);
|
|
uint32_t config = (1 << 0) | /* K = 0b0001 */
|
|
(current_hpf_ ? 1 << 5 : 0) | /* IHPF */
|
|
(voltage_hpf_ ? 1 << 6 : 0) | /* VHPF */
|
|
(pga_gain_ << 16) | /* Gi */
|
|
(pc << 17); /* PC */
|
|
int cnt = 0;
|
|
|
|
/* Serial resynchronization */
|
|
this->write_byte(CMD_SYNC1);
|
|
this->write_byte(CMD_SYNC1);
|
|
this->write_byte(CMD_SYNC1);
|
|
this->write_byte(CMD_SYNC0);
|
|
|
|
/* Reset */
|
|
this->write_register_(REG_CONFIG, 1 << 7);
|
|
delay(10);
|
|
while (cnt++ < 50 && (this->read_register_(REG_CONFIG) & 0x81) != 0x000001)
|
|
;
|
|
if (cnt > 50)
|
|
return false;
|
|
|
|
this->write_register_(REG_CONFIG, config);
|
|
return true;
|
|
}
|
|
|
|
void CS5460AComponent::setup() {
|
|
ESP_LOGCONFIG(TAG, "Setting up CS5460A...");
|
|
|
|
float current_full_scale = (pga_gain_ == CS5460A_PGA_GAIN_10X) ? 0.25 : 0.10;
|
|
float voltage_full_scale = 0.25;
|
|
current_multiplier_ = current_full_scale / (fabsf(current_gain_) * 0x1000000);
|
|
voltage_multiplier_ = voltage_full_scale / (voltage_gain_ * 0x1000000);
|
|
|
|
/*
|
|
* Calculate power from the Energy register because the Power register
|
|
* stores instantaneous power which varies a lot in each AC cycle,
|
|
* while the Energy value is accumulated over the "computation cycle"
|
|
* which should be an integer number of AC cycles.
|
|
*/
|
|
power_multiplier_ =
|
|
(current_full_scale * voltage_full_scale * 4096) / (current_gain_ * voltage_gain_ * samples_ * 0x800000);
|
|
|
|
pulse_freq_ =
|
|
(current_full_scale * voltage_full_scale) / (fabsf(current_gain_) * voltage_gain_ * pulse_energy_wh_ * 3600);
|
|
|
|
hw_init_();
|
|
}
|
|
|
|
void CS5460AComponent::hw_init_() {
|
|
this->spi_setup();
|
|
this->enable();
|
|
|
|
if (!this->softreset_()) {
|
|
this->disable();
|
|
ESP_LOGE(TAG, "CS5460A reset failed!");
|
|
this->mark_failed();
|
|
return;
|
|
}
|
|
|
|
uint32_t status = this->read_register_(REG_STATUS);
|
|
ESP_LOGCONFIG(TAG, " Version: %x", (status >> 6) & 7);
|
|
|
|
this->write_register_(REG_CYCLE_COUNT, samples_);
|
|
this->write_register_(REG_PULSE_RATE, lroundf(pulse_freq_ * 32.0f));
|
|
|
|
/* Use one of the power saving features (assuming external oscillator), reset other CONTROL bits,
|
|
* sometimes softreset_() is not enough */
|
|
this->write_register_(REG_CONTROL, 0x000004);
|
|
|
|
this->restart_();
|
|
this->disable();
|
|
ESP_LOGCONFIG(TAG, " Init ok");
|
|
}
|
|
|
|
/* Doesn't reset the register values etc., just restarts the "computation cycle" */
|
|
void CS5460AComponent::restart_() {
|
|
this->enable();
|
|
/* Stop running conversion, wake up if needed */
|
|
this->write_byte(CMD_POWER_UP);
|
|
/* Start continuous conversion */
|
|
this->write_byte(CMD_START_CONT);
|
|
this->disable();
|
|
|
|
this->started_();
|
|
}
|
|
|
|
void CS5460AComponent::started_() {
|
|
/*
|
|
* Try to guess when the next batch of results is going to be ready and
|
|
* schedule next STATUS check some time before that moment. This assumes
|
|
* two things:
|
|
* * a new "computation cycle" started just now. If it started some
|
|
* time ago we may be a late next time, but hopefully less late in each
|
|
* iteration -- that's why we schedule the next check in some 0.8 of
|
|
* the time we actually expect the next reading ready.
|
|
* * MCLK rate is 4.096MHz and K == 1. If there's a CS5460A module in
|
|
* use with a different clock this will need to be parametrised.
|
|
*/
|
|
expect_data_ts_ = millis() + samples_ * 1024 / 4096;
|
|
|
|
schedule_next_check_();
|
|
}
|
|
|
|
void CS5460AComponent::schedule_next_check_() {
|
|
int32_t time_left = expect_data_ts_ - millis();
|
|
|
|
/* First try at 0.8 of the actual expected time (if it's in the future) */
|
|
if (time_left > 0)
|
|
time_left -= time_left / 5;
|
|
|
|
if (time_left > -500) {
|
|
/* But not sooner than in 30ms from now */
|
|
if (time_left < 30)
|
|
time_left = 30;
|
|
} else {
|
|
/*
|
|
* If the measurement is more than 0.5s overdue start worrying. The
|
|
* device may be stuck because of an overcurrent error or similar,
|
|
* from now on just retry every 1s. After 15s try a reset, if it
|
|
* fails we give up and mark the component "failed".
|
|
*/
|
|
if (time_left > -15000) {
|
|
time_left = 1000;
|
|
this->status_momentary_warning("warning", 1000);
|
|
} else {
|
|
ESP_LOGCONFIG(TAG, "Device officially stuck, resetting");
|
|
this->cancel_timeout("status-check");
|
|
this->hw_init_();
|
|
return;
|
|
}
|
|
}
|
|
|
|
this->set_timeout("status-check", time_left, [this]() {
|
|
if (!this->check_status_())
|
|
this->schedule_next_check_();
|
|
});
|
|
}
|
|
|
|
bool CS5460AComponent::check_status_() {
|
|
this->enable();
|
|
uint32_t status = this->read_register_(REG_STATUS);
|
|
|
|
if (!(status & 0xcbf83c)) {
|
|
this->disable();
|
|
return false;
|
|
}
|
|
|
|
uint32_t clear = 1 << 20;
|
|
|
|
/* TODO: Report if IC=0 but only once as it can't be cleared */
|
|
|
|
if (status & (1 << 2)) {
|
|
clear |= 1 << 2;
|
|
ESP_LOGE(TAG, "Low supply detected");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 3)) {
|
|
clear |= 1 << 3;
|
|
ESP_LOGE(TAG, "Modulator oscillation on current channel");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 4)) {
|
|
clear |= 1 << 4;
|
|
ESP_LOGE(TAG, "Modulator oscillation on voltage channel");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 5)) {
|
|
clear |= 1 << 5;
|
|
ESP_LOGE(TAG, "Watch-dog timeout");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 11)) {
|
|
clear |= 1 << 11;
|
|
ESP_LOGE(TAG, "EOUT Energy Accumulation Register out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 12)) {
|
|
clear |= 1 << 12;
|
|
ESP_LOGE(TAG, "Energy out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 13)) {
|
|
clear |= 1 << 13;
|
|
ESP_LOGE(TAG, "RMS voltage out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 14)) {
|
|
clear |= 1 << 14;
|
|
ESP_LOGE(TAG, "RMS current out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 15)) {
|
|
clear |= 1 << 15;
|
|
ESP_LOGE(TAG, "Power calculation out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 16)) {
|
|
clear |= 1 << 16;
|
|
ESP_LOGE(TAG, "Voltage out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 17)) {
|
|
clear |= 1 << 17;
|
|
ESP_LOGE(TAG, "Current out of range");
|
|
this->status_momentary_warning("warning", 500);
|
|
}
|
|
|
|
if (status & (1 << 19)) {
|
|
clear |= 1 << 19;
|
|
ESP_LOGE(TAG, "Divide overflowed");
|
|
}
|
|
|
|
if (status & (1 << 22)) {
|
|
bool dir = status & (1 << 21);
|
|
if (current_gain_ < 0)
|
|
dir = !dir;
|
|
ESP_LOGI(TAG, "Energy counter %s pulse", dir ? "negative" : "positive");
|
|
clear |= 1 << 22;
|
|
}
|
|
|
|
uint32_t raw_current = 0; /* Calm the validators */
|
|
uint32_t raw_voltage = 0;
|
|
uint32_t raw_energy = 0;
|
|
|
|
if (status & (1 << 23)) {
|
|
clear |= 1 << 23;
|
|
|
|
if (current_sensor_ != nullptr)
|
|
raw_current = this->read_register_(REG_IRMS);
|
|
|
|
if (voltage_sensor_ != nullptr)
|
|
raw_voltage = this->read_register_(REG_VRMS);
|
|
}
|
|
|
|
if (status & ((1 << 23) | (1 << 5))) {
|
|
/* Read to clear the WDT bit */
|
|
raw_energy = this->read_register_(REG_E);
|
|
}
|
|
|
|
this->write_register_(REG_STATUS, clear);
|
|
this->disable();
|
|
|
|
/*
|
|
* Schedule the next STATUS check assuming that DRDY was asserted very
|
|
* recently, then publish the new values. Do this last for reentrancy in
|
|
* case the publish triggers a restart() or for whatever reason needs to
|
|
* cancel the timeout set in schedule_next_check_(), or needs to use SPI.
|
|
* If the current or power values haven't changed one bit it may be that
|
|
* the chip somehow forgot to update the registers -- seen happening very
|
|
* rarely. In that case don't publish them because the user may have
|
|
* the input connected to a multiplexer and may have switched channels
|
|
* since the previous reading and we'd be publishing the stale value for
|
|
* the new channel. If the value *was* updated it's very unlikely that
|
|
* it wouldn't have changed, especially power/energy which are affected
|
|
* by the noise on both the current and value channels (in case of energy,
|
|
* accumulated over many conversion cycles.)
|
|
*/
|
|
if (status & (1 << 23)) {
|
|
this->started_();
|
|
|
|
if (current_sensor_ != nullptr && raw_current != prev_raw_current_) {
|
|
current_sensor_->publish_state(raw_current * current_multiplier_);
|
|
prev_raw_current_ = raw_current;
|
|
}
|
|
|
|
if (voltage_sensor_ != nullptr)
|
|
voltage_sensor_->publish_state(raw_voltage * voltage_multiplier_);
|
|
|
|
if (power_sensor_ != nullptr && raw_energy != prev_raw_energy_) {
|
|
int32_t raw = (int32_t)(raw_energy << 8) >> 8; /* Sign-extend */
|
|
power_sensor_->publish_state(raw * power_multiplier_);
|
|
prev_raw_energy_ = raw_energy;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void CS5460AComponent::dump_config() {
|
|
uint32_t state = this->get_component_state();
|
|
|
|
ESP_LOGCONFIG(TAG, "CS5460A:");
|
|
ESP_LOGCONFIG(TAG, " Init status: %s",
|
|
state == COMPONENT_STATE_LOOP ? "OK" : (state == COMPONENT_STATE_FAILED ? "failed" : "other"));
|
|
LOG_PIN(" CS Pin: ", cs_);
|
|
ESP_LOGCONFIG(TAG, " Samples / cycle: %u", samples_);
|
|
ESP_LOGCONFIG(TAG, " Phase offset: %i", phase_offset_);
|
|
ESP_LOGCONFIG(TAG, " PGA Gain: %s", pga_gain_ == CS5460A_PGA_GAIN_50X ? "50x" : "10x");
|
|
ESP_LOGCONFIG(TAG, " Current gain: %.5f", current_gain_);
|
|
ESP_LOGCONFIG(TAG, " Voltage gain: %.5f", voltage_gain_);
|
|
ESP_LOGCONFIG(TAG, " Current HPF: %s", current_hpf_ ? "enabled" : "disabled");
|
|
ESP_LOGCONFIG(TAG, " Voltage HPF: %s", voltage_hpf_ ? "enabled" : "disabled");
|
|
ESP_LOGCONFIG(TAG, " Pulse energy: %.2f Wh", pulse_energy_wh_);
|
|
LOG_SENSOR(" ", "Voltage", voltage_sensor_);
|
|
LOG_SENSOR(" ", "Current", current_sensor_);
|
|
LOG_SENSOR(" ", "Power", power_sensor_);
|
|
}
|
|
|
|
} // namespace cs5460a
|
|
} // namespace esphome
|