esphome/esphome/components/uart/uart_component_esp8266.cpp
Oxan van Leeuwen 80d03a631e
Force braces around multi-line statements (#3094)
Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
2022-01-25 08:56:36 +13:00

304 lines
9.9 KiB
C++

#ifdef USE_ESP8266
#include "uart_component_esp8266.h"
#include "esphome/core/application.h"
#include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#ifdef USE_LOGGER
#include "esphome/components/logger/logger.h"
#endif
namespace esphome {
namespace uart {
static const char *const TAG = "uart.arduino_esp8266";
bool ESP8266UartComponent::serial0_in_use = false; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
uint32_t ESP8266UartComponent::get_config() {
uint32_t config = 0;
if (this->parity_ == UART_CONFIG_PARITY_NONE) {
config |= UART_PARITY_NONE;
} else if (this->parity_ == UART_CONFIG_PARITY_EVEN) {
config |= UART_PARITY_EVEN;
} else if (this->parity_ == UART_CONFIG_PARITY_ODD) {
config |= UART_PARITY_ODD;
}
switch (this->data_bits_) {
case 5:
config |= UART_NB_BIT_5;
break;
case 6:
config |= UART_NB_BIT_6;
break;
case 7:
config |= UART_NB_BIT_7;
break;
case 8:
config |= UART_NB_BIT_8;
break;
}
if (this->stop_bits_ == 1) {
config |= UART_NB_STOP_BIT_1;
} else {
config |= UART_NB_STOP_BIT_2;
}
if (this->tx_pin_ != nullptr && this->tx_pin_->is_inverted())
config |= BIT(22);
if (this->rx_pin_ != nullptr && this->rx_pin_->is_inverted())
config |= BIT(19);
return config;
}
void ESP8266UartComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up UART bus...");
// Use Arduino HardwareSerial UARTs if all used pins match the ones
// preconfigured by the platform. For example if RX disabled but TX pin
// is 1 we still want to use Serial.
SerialConfig config = static_cast<SerialConfig>(get_config());
if (!ESP8266UartComponent::serial0_in_use && (tx_pin_ == nullptr || tx_pin_->get_pin() == 1) &&
(rx_pin_ == nullptr || rx_pin_->get_pin() == 3)
#ifdef USE_LOGGER
// we will use UART0 if logger isn't using it in swapped mode
&& (logger::global_logger->get_hw_serial() == nullptr ||
logger::global_logger->get_uart() != logger::UART_SELECTION_UART0_SWAP)
#endif
) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
this->hw_serial_->setRxBufferSize(this->rx_buffer_size_);
ESP8266UartComponent::serial0_in_use = true;
} else if (!ESP8266UartComponent::serial0_in_use && (tx_pin_ == nullptr || tx_pin_->get_pin() == 15) &&
(rx_pin_ == nullptr || rx_pin_->get_pin() == 13)
#ifdef USE_LOGGER
// we will use UART0 swapped if logger isn't using it in regular mode
&& (logger::global_logger->get_hw_serial() == nullptr ||
logger::global_logger->get_uart() != logger::UART_SELECTION_UART0)
#endif
) {
this->hw_serial_ = &Serial;
this->hw_serial_->begin(this->baud_rate_, config);
this->hw_serial_->setRxBufferSize(this->rx_buffer_size_);
this->hw_serial_->swap();
ESP8266UartComponent::serial0_in_use = true;
} else if ((tx_pin_ == nullptr || tx_pin_->get_pin() == 2) && (rx_pin_ == nullptr || rx_pin_->get_pin() == 8)) {
this->hw_serial_ = &Serial1;
this->hw_serial_->begin(this->baud_rate_, config);
this->hw_serial_->setRxBufferSize(this->rx_buffer_size_);
} else {
this->sw_serial_ = new ESP8266SoftwareSerial(); // NOLINT
this->sw_serial_->setup(tx_pin_, rx_pin_, this->baud_rate_, this->stop_bits_, this->data_bits_, this->parity_,
this->rx_buffer_size_);
}
}
void ESP8266UartComponent::dump_config() {
ESP_LOGCONFIG(TAG, "UART Bus:");
LOG_PIN(" TX Pin: ", tx_pin_);
LOG_PIN(" RX Pin: ", rx_pin_);
if (this->rx_pin_ != nullptr) {
ESP_LOGCONFIG(TAG, " RX Buffer Size: %u", this->rx_buffer_size_); // NOLINT
}
ESP_LOGCONFIG(TAG, " Baud Rate: %u baud", this->baud_rate_);
ESP_LOGCONFIG(TAG, " Data Bits: %u", this->data_bits_);
ESP_LOGCONFIG(TAG, " Parity: %s", LOG_STR_ARG(parity_to_str(this->parity_)));
ESP_LOGCONFIG(TAG, " Stop bits: %u", this->stop_bits_);
if (this->hw_serial_ != nullptr) {
ESP_LOGCONFIG(TAG, " Using hardware serial interface.");
} else {
ESP_LOGCONFIG(TAG, " Using software serial");
}
this->check_logger_conflict();
}
void ESP8266UartComponent::check_logger_conflict() {
#ifdef USE_LOGGER
if (this->hw_serial_ == nullptr || logger::global_logger->get_baud_rate() == 0) {
return;
}
if (this->hw_serial_ == logger::global_logger->get_hw_serial()) {
ESP_LOGW(TAG, " You're using the same serial port for logging and the UART component. Please "
"disable logging over the serial port by setting logger->baud_rate to 0.");
}
#endif
}
void ESP8266UartComponent::write_array(const uint8_t *data, size_t len) {
if (this->hw_serial_ != nullptr) {
this->hw_serial_->write(data, len);
} else {
for (size_t i = 0; i < len; i++)
this->sw_serial_->write_byte(data[i]);
}
#ifdef USE_UART_DEBUGGER
for (size_t i = 0; i < len; i++) {
this->debug_callback_.call(UART_DIRECTION_TX, data[i]);
}
#endif
}
bool ESP8266UartComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
if (this->hw_serial_ != nullptr) {
*data = this->hw_serial_->peek();
} else {
*data = this->sw_serial_->peek_byte();
}
return true;
}
bool ESP8266UartComponent::read_array(uint8_t *data, size_t len) {
if (!this->check_read_timeout_(len))
return false;
if (this->hw_serial_ != nullptr) {
this->hw_serial_->readBytes(data, len);
} else {
for (size_t i = 0; i < len; i++)
data[i] = this->sw_serial_->read_byte();
}
#ifdef USE_UART_DEBUGGER
for (size_t i = 0; i < len; i++) {
this->debug_callback_.call(UART_DIRECTION_RX, data[i]);
}
#endif
return true;
}
int ESP8266UartComponent::available() {
if (this->hw_serial_ != nullptr) {
return this->hw_serial_->available();
} else {
return this->sw_serial_->available();
}
}
void ESP8266UartComponent::flush() {
ESP_LOGVV(TAG, " Flushing...");
if (this->hw_serial_ != nullptr) {
this->hw_serial_->flush();
} else {
this->sw_serial_->flush();
}
}
void ESP8266SoftwareSerial::setup(InternalGPIOPin *tx_pin, InternalGPIOPin *rx_pin, uint32_t baud_rate,
uint8_t stop_bits, uint32_t data_bits, UARTParityOptions parity,
size_t rx_buffer_size) {
this->bit_time_ = F_CPU / baud_rate;
this->rx_buffer_size_ = rx_buffer_size;
this->stop_bits_ = stop_bits;
this->data_bits_ = data_bits;
this->parity_ = parity;
if (tx_pin != nullptr) {
gpio_tx_pin_ = tx_pin;
gpio_tx_pin_->setup();
tx_pin_ = gpio_tx_pin_->to_isr();
tx_pin_.digital_write(true);
}
if (rx_pin != nullptr) {
gpio_rx_pin_ = rx_pin;
gpio_rx_pin_->setup();
rx_pin_ = gpio_rx_pin_->to_isr();
rx_buffer_ = new uint8_t[this->rx_buffer_size_]; // NOLINT
gpio_rx_pin_->attach_interrupt(ESP8266SoftwareSerial::gpio_intr, this, gpio::INTERRUPT_FALLING_EDGE);
}
}
void IRAM_ATTR ESP8266SoftwareSerial::gpio_intr(ESP8266SoftwareSerial *arg) {
uint32_t wait = arg->bit_time_ + arg->bit_time_ / 3 - 500;
const uint32_t start = arch_get_cpu_cycle_count();
uint8_t rec = 0;
// Manually unroll the loop
for (int i = 0; i < arg->data_bits_; i++)
rec |= arg->read_bit_(&wait, start) << i;
/* If parity is enabled, just read it and ignore it. */
/* TODO: Should we check parity? Or is it too slow for nothing added..*/
if (arg->parity_ == UART_CONFIG_PARITY_EVEN || arg->parity_ == UART_CONFIG_PARITY_ODD)
arg->read_bit_(&wait, start);
// Stop bit
arg->wait_(&wait, start);
if (arg->stop_bits_ == 2)
arg->wait_(&wait, start);
arg->rx_buffer_[arg->rx_in_pos_] = rec;
arg->rx_in_pos_ = (arg->rx_in_pos_ + 1) % arg->rx_buffer_size_;
// Clear RX pin so that the interrupt doesn't re-trigger right away again.
arg->rx_pin_.clear_interrupt();
}
void IRAM_ATTR HOT ESP8266SoftwareSerial::write_byte(uint8_t data) {
if (this->gpio_tx_pin_ == nullptr) {
ESP_LOGE(TAG, "UART doesn't have TX pins set!");
return;
}
bool parity_bit = false;
bool need_parity_bit = true;
if (this->parity_ == UART_CONFIG_PARITY_EVEN) {
parity_bit = false;
} else if (this->parity_ == UART_CONFIG_PARITY_ODD) {
parity_bit = true;
} else {
need_parity_bit = false;
}
{
InterruptLock lock;
uint32_t wait = this->bit_time_;
const uint32_t start = arch_get_cpu_cycle_count();
// Start bit
this->write_bit_(false, &wait, start);
for (int i = 0; i < this->data_bits_; i++) {
bool bit = data & (1 << i);
this->write_bit_(bit, &wait, start);
if (need_parity_bit)
parity_bit ^= bit;
}
if (need_parity_bit)
this->write_bit_(parity_bit, &wait, start);
// Stop bit
this->write_bit_(true, &wait, start);
if (this->stop_bits_ == 2)
this->wait_(&wait, start);
}
}
void IRAM_ATTR ESP8266SoftwareSerial::wait_(uint32_t *wait, const uint32_t &start) {
while (arch_get_cpu_cycle_count() - start < *wait)
;
*wait += this->bit_time_;
}
bool IRAM_ATTR ESP8266SoftwareSerial::read_bit_(uint32_t *wait, const uint32_t &start) {
this->wait_(wait, start);
return this->rx_pin_.digital_read();
}
void IRAM_ATTR ESP8266SoftwareSerial::write_bit_(bool bit, uint32_t *wait, const uint32_t &start) {
this->tx_pin_.digital_write(bit);
this->wait_(wait, start);
}
uint8_t ESP8266SoftwareSerial::read_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
uint8_t data = this->rx_buffer_[this->rx_out_pos_];
this->rx_out_pos_ = (this->rx_out_pos_ + 1) % this->rx_buffer_size_;
return data;
}
uint8_t ESP8266SoftwareSerial::peek_byte() {
if (this->rx_in_pos_ == this->rx_out_pos_)
return 0;
return this->rx_buffer_[this->rx_out_pos_];
}
void ESP8266SoftwareSerial::flush() {
// Flush is a NO-OP with software serial, all bytes are written immediately.
}
int ESP8266SoftwareSerial::available() {
int avail = int(this->rx_in_pos_) - int(this->rx_out_pos_);
if (avail < 0)
return avail + this->rx_buffer_size_;
return avail;
}
} // namespace uart
} // namespace esphome
#endif // USE_ESP8266