mirror of
https://github.com/esphome/esphome.git
synced 2024-12-02 11:44:13 +01:00
254 lines
6.6 KiB
C++
254 lines
6.6 KiB
C++
#include "esp_one_wire.h"
|
|
#include "esphome/core/log.h"
|
|
#include "esphome/core/helpers.h"
|
|
|
|
namespace esphome {
|
|
namespace dallas {
|
|
|
|
static const char *const TAG = "dallas.one_wire";
|
|
|
|
const uint8_t ONE_WIRE_ROM_SELECT = 0x55;
|
|
const int ONE_WIRE_ROM_SEARCH = 0xF0;
|
|
|
|
ESPOneWire::ESPOneWire(InternalGPIOPin *pin) { pin_ = pin->to_isr(); }
|
|
|
|
bool HOT IRAM_ATTR ESPOneWire::reset() {
|
|
// See reset here:
|
|
// https://www.maximintegrated.com/en/design/technical-documents/app-notes/1/126.html
|
|
// Wait for communication to clear (delay G)
|
|
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
|
|
uint8_t retries = 125;
|
|
do {
|
|
if (--retries == 0)
|
|
return false;
|
|
delayMicroseconds(2);
|
|
} while (!pin_.digital_read());
|
|
|
|
// Send 480µs LOW TX reset pulse (drive bus low, delay H)
|
|
pin_.pin_mode(gpio::FLAG_OUTPUT);
|
|
pin_.digital_write(false);
|
|
delayMicroseconds(480);
|
|
|
|
// Release the bus, delay I
|
|
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
|
|
delayMicroseconds(70);
|
|
|
|
// sample bus, 0=device(s) present, 1=no device present
|
|
bool r = !pin_.digital_read();
|
|
// delay J
|
|
delayMicroseconds(410);
|
|
return r;
|
|
}
|
|
|
|
void HOT IRAM_ATTR ESPOneWire::write_bit(bool bit) {
|
|
// drive bus low
|
|
pin_.pin_mode(gpio::FLAG_OUTPUT);
|
|
pin_.digital_write(false);
|
|
|
|
// from datasheet:
|
|
// write 0 low time: t_low0: min=60µs, max=120µs
|
|
// write 1 low time: t_low1: min=1µs, max=15µs
|
|
// time slot: t_slot: min=60µs, max=120µs
|
|
// recovery time: t_rec: min=1µs
|
|
// ds18b20 appears to read the bus after roughly 14µs
|
|
uint32_t delay0 = bit ? 6 : 60;
|
|
uint32_t delay1 = bit ? 54 : 5;
|
|
|
|
// delay A/C
|
|
delayMicroseconds(delay0);
|
|
// release bus
|
|
pin_.digital_write(true);
|
|
// delay B/D
|
|
delayMicroseconds(delay1);
|
|
}
|
|
|
|
bool HOT IRAM_ATTR ESPOneWire::read_bit() {
|
|
// drive bus low
|
|
pin_.pin_mode(gpio::FLAG_OUTPUT);
|
|
pin_.digital_write(false);
|
|
|
|
// note: for reading we'll need very accurate timing, as the
|
|
// timing for the digital_read() is tight; according to the datasheet,
|
|
// we should read at the end of 16µs starting from the bus low
|
|
// typically, the ds18b20 pulls the line high after 11µs for a logical 1
|
|
// and 29µs for a logical 0
|
|
|
|
uint32_t start = micros();
|
|
// datasheet says >1µs
|
|
delayMicroseconds(3);
|
|
|
|
// release bus, delay E
|
|
pin_.pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP);
|
|
|
|
// Unfortunately some frameworks have different characteristics than others
|
|
// esp32 arduino appears to pull the bus low only after the digital_write(false),
|
|
// whereas on esp-idf it already happens during the pin_mode(OUTPUT)
|
|
// manually correct for this with these constants.
|
|
|
|
#ifdef USE_ESP32_FRAMEWORK_ARDUINO
|
|
uint32_t timing_constant = 14;
|
|
#elif defined(USE_ESP32_FRAMEWORK_ESP_IDF)
|
|
uint32_t timing_constant = 12;
|
|
#else
|
|
uint32_t timing_constant = 14;
|
|
#endif
|
|
|
|
// measure from start value directly, to get best accurate timing no matter
|
|
// how long pin_mode/delayMicroseconds took
|
|
while (micros() - start < timing_constant)
|
|
;
|
|
|
|
// sample bus to read bit from peer
|
|
bool r = pin_.digital_read();
|
|
|
|
// read slot is at least 60µs; get as close to 60µs to spend less time with interrupts locked
|
|
uint32_t now = micros();
|
|
if (now - start < 60)
|
|
delayMicroseconds(60 - (now - start));
|
|
|
|
return r;
|
|
}
|
|
|
|
void IRAM_ATTR ESPOneWire::write8(uint8_t val) {
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
this->write_bit(bool((1u << i) & val));
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR ESPOneWire::write64(uint64_t val) {
|
|
for (uint8_t i = 0; i < 64; i++) {
|
|
this->write_bit(bool((1ULL << i) & val));
|
|
}
|
|
}
|
|
|
|
uint8_t IRAM_ATTR ESPOneWire::read8() {
|
|
uint8_t ret = 0;
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
ret |= (uint8_t(this->read_bit()) << i);
|
|
}
|
|
return ret;
|
|
}
|
|
uint64_t IRAM_ATTR ESPOneWire::read64() {
|
|
uint64_t ret = 0;
|
|
for (uint8_t i = 0; i < 8; i++) {
|
|
ret |= (uint64_t(this->read_bit()) << i);
|
|
}
|
|
return ret;
|
|
}
|
|
void IRAM_ATTR ESPOneWire::select(uint64_t address) {
|
|
this->write8(ONE_WIRE_ROM_SELECT);
|
|
this->write64(address);
|
|
}
|
|
void IRAM_ATTR ESPOneWire::reset_search() {
|
|
this->last_discrepancy_ = 0;
|
|
this->last_device_flag_ = false;
|
|
this->rom_number_ = 0;
|
|
}
|
|
uint64_t IRAM_ATTR ESPOneWire::search() {
|
|
if (this->last_device_flag_) {
|
|
return 0u;
|
|
}
|
|
|
|
{
|
|
InterruptLock lock;
|
|
if (!this->reset()) {
|
|
// Reset failed or no devices present
|
|
this->reset_search();
|
|
return 0u;
|
|
}
|
|
}
|
|
|
|
uint8_t id_bit_number = 1;
|
|
uint8_t last_zero = 0;
|
|
uint8_t rom_byte_number = 0;
|
|
bool search_result = false;
|
|
uint8_t rom_byte_mask = 1;
|
|
|
|
{
|
|
InterruptLock lock;
|
|
// Initiate search
|
|
this->write8(ONE_WIRE_ROM_SEARCH);
|
|
do {
|
|
// read bit
|
|
bool id_bit = this->read_bit();
|
|
// read its complement
|
|
bool cmp_id_bit = this->read_bit();
|
|
|
|
if (id_bit && cmp_id_bit) {
|
|
// No devices participating in search
|
|
break;
|
|
}
|
|
|
|
bool branch;
|
|
|
|
if (id_bit != cmp_id_bit) {
|
|
// only chose one branch, the other one doesn't have any devices.
|
|
branch = id_bit;
|
|
} else {
|
|
// there are devices with both 0s and 1s at this bit
|
|
if (id_bit_number < this->last_discrepancy_) {
|
|
branch = (this->rom_number8_()[rom_byte_number] & rom_byte_mask) > 0;
|
|
} else {
|
|
branch = id_bit_number == this->last_discrepancy_;
|
|
}
|
|
|
|
if (!branch) {
|
|
last_zero = id_bit_number;
|
|
}
|
|
}
|
|
|
|
if (branch) {
|
|
// set bit
|
|
this->rom_number8_()[rom_byte_number] |= rom_byte_mask;
|
|
} else {
|
|
// clear bit
|
|
this->rom_number8_()[rom_byte_number] &= ~rom_byte_mask;
|
|
}
|
|
|
|
// choose/announce branch
|
|
this->write_bit(branch);
|
|
id_bit_number++;
|
|
rom_byte_mask <<= 1;
|
|
if (rom_byte_mask == 0u) {
|
|
// go to next byte
|
|
rom_byte_number++;
|
|
rom_byte_mask = 1;
|
|
}
|
|
} while (rom_byte_number < 8); // loop through all bytes
|
|
}
|
|
|
|
if (id_bit_number >= 65) {
|
|
this->last_discrepancy_ = last_zero;
|
|
if (this->last_discrepancy_ == 0) {
|
|
// we're at root and have no choices left, so this was the last one.
|
|
this->last_device_flag_ = true;
|
|
}
|
|
search_result = true;
|
|
}
|
|
|
|
search_result = search_result && (this->rom_number8_()[0] != 0);
|
|
if (!search_result) {
|
|
this->reset_search();
|
|
return 0u;
|
|
}
|
|
|
|
return this->rom_number_;
|
|
}
|
|
std::vector<uint64_t> ESPOneWire::search_vec() {
|
|
std::vector<uint64_t> res;
|
|
|
|
this->reset_search();
|
|
uint64_t address;
|
|
while ((address = this->search()) != 0u)
|
|
res.push_back(address);
|
|
|
|
return res;
|
|
}
|
|
void IRAM_ATTR ESPOneWire::skip() {
|
|
this->write8(0xCC); // skip ROM
|
|
}
|
|
|
|
uint8_t IRAM_ATTR *ESPOneWire::rom_number8_() { return reinterpret_cast<uint8_t *>(&this->rom_number_); }
|
|
|
|
} // namespace dallas
|
|
} // namespace esphome
|