mirror of
https://github.com/esphome/esphome.git
synced 2024-12-04 04:28:19 +01:00
567 lines
21 KiB
C++
567 lines
21 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
#include <string>
|
|
#include <functional>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
|
|
#ifdef USE_ESP32
|
|
#include <esp_heap_caps.h>
|
|
#endif
|
|
|
|
#include "esphome/core/optional.h"
|
|
|
|
#define HOT __attribute__((hot))
|
|
#define ESPDEPRECATED(msg, when) __attribute__((deprecated(msg)))
|
|
#define ALWAYS_INLINE __attribute__((always_inline))
|
|
#define PACKED __attribute__((packed))
|
|
|
|
namespace esphome {
|
|
|
|
/// Get the device MAC address as raw bytes, written into the provided byte array (6 bytes).
|
|
void get_mac_address_raw(uint8_t *mac);
|
|
|
|
/// Get the device MAC address as a string, in lowercase hex notation.
|
|
std::string get_mac_address();
|
|
|
|
/// Get the device MAC address as a string, in colon-separated uppercase hex notation.
|
|
std::string get_mac_address_pretty();
|
|
|
|
#ifdef USE_ESP32
|
|
/// Set the MAC address to use from the provided byte array (6 bytes).
|
|
void set_mac_address(uint8_t *mac);
|
|
#endif
|
|
|
|
/// Compare string a to string b (ignoring case) and return whether they are equal.
|
|
bool str_equals_case_insensitive(const std::string &a, const std::string &b);
|
|
bool str_startswith(const std::string &full, const std::string &start);
|
|
bool str_endswith(const std::string &full, const std::string &ending);
|
|
|
|
/// snprintf-like function returning std::string with a given maximum length.
|
|
std::string __attribute__((format(printf, 1, 3))) str_snprintf(const char *fmt, size_t length, ...);
|
|
|
|
/// sprintf-like function returning std::string.
|
|
std::string __attribute__((format(printf, 1, 2))) str_sprintf(const char *fmt, ...);
|
|
|
|
class HighFrequencyLoopRequester {
|
|
public:
|
|
void start();
|
|
void stop();
|
|
|
|
static bool is_high_frequency();
|
|
|
|
protected:
|
|
bool started_{false};
|
|
};
|
|
|
|
/** Clamp the value between min and max.
|
|
*
|
|
* @param val The value.
|
|
* @param min The minimum value.
|
|
* @param max The maximum value.
|
|
* @return val clamped in between min and max.
|
|
*/
|
|
template<typename T> T clamp(T val, T min, T max);
|
|
|
|
/** Linearly interpolate between end start and end by completion.
|
|
*
|
|
* @tparam T The input/output typename.
|
|
* @param start The start value.
|
|
* @param end The end value.
|
|
* @param completion The completion. 0 is start value, 1 is end value.
|
|
* @return The linearly interpolated value.
|
|
*/
|
|
float lerp(float completion, float start, float end);
|
|
|
|
// Not all platforms we support target C++14 yet, so we can't unconditionally use std::make_unique. Provide our own
|
|
// implementation if needed, and otherwise pull std::make_unique into scope so that we have a uniform API.
|
|
#if __cplusplus >= 201402L
|
|
using std::make_unique;
|
|
#else
|
|
template<typename T, typename... Args> std::unique_ptr<T> make_unique(Args &&...args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
#endif
|
|
|
|
/// Return a random 32 bit unsigned integer.
|
|
uint32_t random_uint32();
|
|
|
|
/** Returns a random double between 0 and 1.
|
|
*
|
|
* Note: This function probably doesn't provide a truly uniform distribution.
|
|
*/
|
|
double random_double();
|
|
|
|
/// Returns a random float between 0 and 1. Essentially just casts random_double() to a float.
|
|
float random_float();
|
|
|
|
void fill_random(uint8_t *data, size_t len);
|
|
|
|
void fast_random_set_seed(uint32_t seed);
|
|
uint32_t fast_random_32();
|
|
uint16_t fast_random_16();
|
|
uint8_t fast_random_8();
|
|
|
|
/// Applies gamma correction with the provided gamma to value.
|
|
float gamma_correct(float value, float gamma);
|
|
/// Reverts gamma correction with the provided gamma to value.
|
|
float gamma_uncorrect(float value, float gamma);
|
|
|
|
/// Create a string from a value and an accuracy in decimals.
|
|
std::string value_accuracy_to_string(float value, int8_t accuracy_decimals);
|
|
|
|
/// Convert a uint64_t to a hex string
|
|
std::string uint64_to_string(uint64_t num);
|
|
|
|
/// Convert a uint32_t to a hex string
|
|
std::string uint32_to_string(uint32_t num);
|
|
|
|
uint8_t reverse_bits_8(uint8_t x);
|
|
uint16_t reverse_bits_16(uint16_t x);
|
|
uint32_t reverse_bits_32(uint32_t x);
|
|
|
|
/// Convert RGB floats (0-1) to hue (0-360) & saturation/value percentage (0-1)
|
|
void rgb_to_hsv(float red, float green, float blue, int &hue, float &saturation, float &value);
|
|
/// Convert hue (0-360) & saturation/value percentage (0-1) to RGB floats (0-1)
|
|
void hsv_to_rgb(int hue, float saturation, float value, float &red, float &green, float &blue);
|
|
|
|
/***
|
|
* An interrupt helper class.
|
|
*
|
|
* This behaves like std::lock_guard. As long as the value is visible in the current stack, all interrupts
|
|
* (including flash reads) will be disabled.
|
|
*
|
|
* Please note all functions called when the interrupt lock must be marked IRAM_ATTR (loading code into
|
|
* instruction cache is done via interrupts; disabling interrupts prevents data not already in cache from being
|
|
* pulled from flash).
|
|
*
|
|
* Example:
|
|
*
|
|
* ```cpp
|
|
* // interrupts are enabled
|
|
* {
|
|
* InterruptLock lock;
|
|
* // do something
|
|
* // interrupts are disabled
|
|
* }
|
|
* // interrupts are enabled
|
|
* ```
|
|
*/
|
|
class InterruptLock {
|
|
public:
|
|
InterruptLock();
|
|
~InterruptLock();
|
|
|
|
protected:
|
|
#ifdef USE_ESP8266
|
|
uint32_t xt_state_;
|
|
#endif
|
|
};
|
|
|
|
/// Calculate a crc8 of data with the provided data length.
|
|
uint8_t crc8(uint8_t *data, uint8_t len);
|
|
|
|
enum ParseOnOffState {
|
|
PARSE_NONE = 0,
|
|
PARSE_ON,
|
|
PARSE_OFF,
|
|
PARSE_TOGGLE,
|
|
};
|
|
|
|
ParseOnOffState parse_on_off(const char *str, const char *on = nullptr, const char *off = nullptr);
|
|
|
|
// https://stackoverflow.com/questions/7858817/unpacking-a-tuple-to-call-a-matching-function-pointer/7858971#7858971
|
|
template<int...> struct seq {}; // NOLINT
|
|
template<int N, int... S> struct gens : gens<N - 1, N - 1, S...> {}; // NOLINT
|
|
template<int... S> struct gens<0, S...> { using type = seq<S...>; }; // NOLINT
|
|
|
|
template<bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
|
|
|
|
template<typename T, enable_if_t<!std::is_pointer<T>::value, int> = 0> T id(T value) { return value; }
|
|
template<typename T, enable_if_t<std::is_pointer<T *>::value, int> = 0> T &id(T *value) { return *value; }
|
|
|
|
template<typename... X> class CallbackManager;
|
|
|
|
/** Simple helper class to allow having multiple subscribers to a signal.
|
|
*
|
|
* @tparam Ts The arguments for the callback, wrapped in void().
|
|
*/
|
|
template<typename... Ts> class CallbackManager<void(Ts...)> {
|
|
public:
|
|
/// Add a callback to the internal callback list.
|
|
void add(std::function<void(Ts...)> &&callback) { this->callbacks_.push_back(std::move(callback)); }
|
|
|
|
/// Call all callbacks in this manager.
|
|
void call(Ts... args) {
|
|
for (auto &cb : this->callbacks_)
|
|
cb(args...);
|
|
}
|
|
|
|
protected:
|
|
std::vector<std::function<void(Ts...)>> callbacks_;
|
|
};
|
|
|
|
// https://stackoverflow.com/a/37161919/8924614
|
|
template<class T, class... Args>
|
|
struct is_callable // NOLINT
|
|
{
|
|
template<class U> static auto test(U *p) -> decltype((*p)(std::declval<Args>()...), void(), std::true_type());
|
|
|
|
template<class U> static auto test(...) -> decltype(std::false_type());
|
|
|
|
static constexpr auto value = decltype(test<T>(nullptr))::value; // NOLINT
|
|
};
|
|
|
|
void delay_microseconds_safe(uint32_t us);
|
|
|
|
template<typename T> class Deduplicator {
|
|
public:
|
|
bool next(T value) {
|
|
if (this->has_value_) {
|
|
if (this->last_value_ == value)
|
|
return false;
|
|
}
|
|
this->has_value_ = true;
|
|
this->last_value_ = value;
|
|
return true;
|
|
}
|
|
bool has_value() const { return this->has_value_; }
|
|
|
|
protected:
|
|
bool has_value_{false};
|
|
T last_value_{};
|
|
};
|
|
|
|
template<typename T> class Parented {
|
|
public:
|
|
Parented() {}
|
|
Parented(T *parent) : parent_(parent) {}
|
|
|
|
T *get_parent() const { return parent_; }
|
|
void set_parent(T *parent) { parent_ = parent; }
|
|
|
|
protected:
|
|
T *parent_{nullptr};
|
|
};
|
|
|
|
uint32_t fnv1_hash(const std::string &str);
|
|
|
|
// ---------------------------------------------------------------------------------------------------------------------
|
|
|
|
/// @name STL backports
|
|
///@{
|
|
|
|
// std::to_string() from C++11, available from libstdc++/g++ 8
|
|
// See https://github.com/espressif/esp-idf/issues/1445
|
|
#if _GLIBCXX_RELEASE >= 8
|
|
using std::to_string;
|
|
#else
|
|
inline std::string to_string(int value) { return str_snprintf("%d", 32, value); } // NOLINT
|
|
inline std::string to_string(long value) { return str_snprintf("%ld", 32, value); } // NOLINT
|
|
inline std::string to_string(long long value) { return str_snprintf("%lld", 32, value); } // NOLINT
|
|
inline std::string to_string(unsigned value) { return str_snprintf("%u", 32, value); } // NOLINT
|
|
inline std::string to_string(unsigned long value) { return str_snprintf("%lu", 32, value); } // NOLINT
|
|
inline std::string to_string(unsigned long long value) { return str_snprintf("%llu", 32, value); } // NOLINT
|
|
inline std::string to_string(float value) { return str_snprintf("%f", 32, value); }
|
|
inline std::string to_string(double value) { return str_snprintf("%f", 32, value); }
|
|
inline std::string to_string(long double value) { return str_snprintf("%Lf", 32, value); }
|
|
#endif
|
|
|
|
// std::is_trivially_copyable from C++11, implemented in libstdc++/g++ 5.1 (but minor releases can't be detected)
|
|
#if _GLIBCXX_RELEASE >= 6
|
|
using std::is_trivially_copyable;
|
|
#else
|
|
// Implementing this is impossible without compiler intrinsics, so don't bother. Invalid usage will be detected on
|
|
// other variants that use a newer compiler anyway.
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
template<typename T> struct is_trivially_copyable : public std::integral_constant<bool, true> {};
|
|
#endif
|
|
|
|
// std::bit_cast from C++20
|
|
#if __cpp_lib_bit_cast >= 201806
|
|
using std::bit_cast;
|
|
#else
|
|
/// Convert data between types, without aliasing issues or undefined behaviour.
|
|
template<
|
|
typename To, typename From,
|
|
enable_if_t<sizeof(To) == sizeof(From) && is_trivially_copyable<From>::value && is_trivially_copyable<To>::value,
|
|
int> = 0>
|
|
To bit_cast(const From &src) {
|
|
To dst;
|
|
memcpy(&dst, &src, sizeof(To));
|
|
return dst;
|
|
}
|
|
#endif
|
|
|
|
// std::byteswap is from C++23 and technically should be a template, but this will do for now.
|
|
constexpr uint8_t byteswap(uint8_t n) { return n; }
|
|
constexpr uint16_t byteswap(uint16_t n) { return __builtin_bswap16(n); }
|
|
constexpr uint32_t byteswap(uint32_t n) { return __builtin_bswap32(n); }
|
|
constexpr uint64_t byteswap(uint64_t n) { return __builtin_bswap64(n); }
|
|
|
|
///@}
|
|
|
|
/// @name Bit manipulation
|
|
///@{
|
|
|
|
/// Encode a 16-bit value given the most and least significant byte.
|
|
constexpr uint16_t encode_uint16(uint8_t msb, uint8_t lsb) {
|
|
return (static_cast<uint16_t>(msb) << 8) | (static_cast<uint16_t>(lsb));
|
|
}
|
|
/// Encode a 32-bit value given four bytes in most to least significant byte order.
|
|
constexpr uint32_t encode_uint32(uint8_t byte1, uint8_t byte2, uint8_t byte3, uint8_t byte4) {
|
|
return (static_cast<uint32_t>(byte1) << 24) | (static_cast<uint32_t>(byte2) << 16) |
|
|
(static_cast<uint32_t>(byte3) << 8) | (static_cast<uint32_t>(byte4));
|
|
}
|
|
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> inline T encode_value(const uint8_t *bytes) {
|
|
T val = 0;
|
|
for (size_t i = 0; i < sizeof(T); i++) {
|
|
val <<= 8;
|
|
val |= bytes[i];
|
|
}
|
|
return val;
|
|
}
|
|
/// Encode a value from its constituent bytes (from most to least significant) in an std::array with length sizeof(T).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
inline T encode_value(const std::array<uint8_t, sizeof(T)> bytes) {
|
|
return encode_value<T>(bytes.data());
|
|
}
|
|
/// Decode a value into its constituent bytes (from most to least significant).
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
inline std::array<uint8_t, sizeof(T)> decode_value(T val) {
|
|
std::array<uint8_t, sizeof(T)> ret{};
|
|
for (size_t i = sizeof(T); i > 0; i--) {
|
|
ret[i - 1] = val & 0xFF;
|
|
val >>= 8;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/// Convert a value between host byte order and big endian (most significant byte first) order.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> constexpr T convert_big_endian(T val) {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return byteswap(val);
|
|
#else
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
///@}
|
|
|
|
/// @name Strings
|
|
///@{
|
|
|
|
/// Convert the value to a string (added as extra overload so that to_string() can be used on all stringifiable types).
|
|
inline std::string to_string(const std::string &val) { return val; }
|
|
|
|
/// Truncate a string to a specific length.
|
|
std::string str_truncate(const std::string &str, size_t length);
|
|
|
|
/// Extract the part of the string until either the first occurence of the specified character, or the end (requires str
|
|
/// to be null-terminated).
|
|
std::string str_until(const char *str, char ch);
|
|
/// Extract the part of the string until either the first occurence of the specified character, or the end.
|
|
std::string str_until(const std::string &str, char ch);
|
|
|
|
/// Convert the string to snake case (lowercase with underscores).
|
|
std::string str_snake_case(const std::string &str);
|
|
|
|
/// Sanitizes the input string by removing all characters but alphanumerics, dashes and underscores.
|
|
std::string str_sanitize(const std::string &str);
|
|
|
|
///@}
|
|
|
|
/// @name Parsing & formatting
|
|
///@{
|
|
|
|
/// Parse an unsigned decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
unsigned long value = ::strtoul(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse an unsigned decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_unsigned<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a signed decimal number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
signed long value = ::strtol(str, &end, 10); // NOLINT(google-runtime-int)
|
|
if (end == str || *end != '\0' || value < std::numeric_limits<T>::min() || value > std::numeric_limits<T>::max())
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a signed decimal number.
|
|
template<typename T, enable_if_t<(std::is_integral<T>::value && std::is_signed<T>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
/// Parse a decimal floating-point number from a null-terminated string.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0> optional<T> parse_number(const char *str) {
|
|
char *end = nullptr;
|
|
float value = ::strtof(str, &end);
|
|
if (end == str || *end != '\0' || value == HUGE_VALF)
|
|
return {};
|
|
return value;
|
|
}
|
|
/// Parse a decimal floating-point number.
|
|
template<typename T, enable_if_t<(std::is_same<T, float>::value), int> = 0>
|
|
optional<T> parse_number(const std::string &str) {
|
|
return parse_number<T>(str.c_str());
|
|
}
|
|
|
|
/** Parse bytes from a hex-encoded string into a byte array.
|
|
*
|
|
* When \p len is less than \p 2*count, the result is written to the back of \p data (i.e. this function treats \p str
|
|
* as if it were padded with zeros at the front).
|
|
*
|
|
* @param str String to read from.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
* @param data Byte array to write to.
|
|
* @param count Length of \p data.
|
|
* @return The number of characters parsed from \p str.
|
|
*/
|
|
size_t parse_hex(const char *str, size_t len, uint8_t *data, size_t count);
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const char *str, uint8_t *data, size_t count) {
|
|
return parse_hex(str, strlen(str), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into array \p data.
|
|
inline bool parse_hex(const std::string &str, uint8_t *data, size_t count) {
|
|
return parse_hex(str.c_str(), str.length(), data, count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const char *str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str, strlen(str), data.data(), count) == 2 * count;
|
|
}
|
|
/// Parse \p count bytes from the hex-encoded string \p str of at least \p 2*count characters into vector \p data.
|
|
inline bool parse_hex(const std::string &str, std::vector<uint8_t> &data, size_t count) {
|
|
data.resize(count);
|
|
return parse_hex(str.c_str(), str.length(), data.data(), count) == 2 * count;
|
|
}
|
|
/** Parse a hex-encoded string into an unsigned integer.
|
|
*
|
|
* @param str String to read from, starting with the most significant byte.
|
|
* @param len Length of \p str (excluding optional null-terminator), is a limit on the number of characters parsed.
|
|
*/
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0>
|
|
optional<T> parse_hex(const char *str, size_t len) {
|
|
T val = 0;
|
|
if (len > 2 * sizeof(T) || parse_hex(str, len, reinterpret_cast<uint8_t *>(&val), sizeof(T)) == 0)
|
|
return {};
|
|
return convert_big_endian(val);
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const char *str) {
|
|
return parse_hex<T>(str, strlen(str));
|
|
}
|
|
/// Parse a hex-encoded null-terminated string (starting with the most significant byte) into an unsigned integer.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> optional<T> parse_hex(const std::string &str) {
|
|
return parse_hex<T>(str.c_str(), str.length());
|
|
}
|
|
|
|
/// Format the byte array \p data of length \p len in lowercased hex.
|
|
std::string format_hex(const uint8_t *data, size_t length);
|
|
/// Format the vector \p data in lowercased hex.
|
|
std::string format_hex(std::vector<uint8_t> data);
|
|
/// Format an unsigned integer in lowercased hex, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_hex(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
|
|
/// Format the byte array \p data of length \p len in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(const uint8_t *data, size_t length);
|
|
/// Format the vector \p data in pretty-printed, human-readable hex.
|
|
std::string format_hex_pretty(std::vector<uint8_t> data);
|
|
/// Format an unsigned integer in pretty-printed, human-readable hex, starting with the most significant byte.
|
|
template<typename T, enable_if_t<std::is_unsigned<T>::value, int> = 0> std::string format_hex_pretty(T val) {
|
|
val = convert_big_endian(val);
|
|
return format_hex_pretty(reinterpret_cast<uint8_t *>(&val), sizeof(T));
|
|
}
|
|
|
|
///@}
|
|
|
|
/// @name Number manipulation
|
|
///@{
|
|
|
|
/// Remap a number from one range to another.
|
|
template<typename T, typename U> T remap(U value, U min, U max, T min_out, T max_out) {
|
|
return (value - min) * (max_out - min_out) / (max - min) + min_out;
|
|
}
|
|
|
|
///@}
|
|
|
|
/// @name Memory management
|
|
///@{
|
|
|
|
/** An STL allocator that uses SPI RAM.
|
|
*
|
|
* By setting flags, it can be configured to don't try main memory if SPI RAM is full or unavailable, and to return
|
|
* `nulllptr` instead of aborting when no memory is available.
|
|
*/
|
|
template<class T> class ExternalRAMAllocator {
|
|
public:
|
|
using value_type = T;
|
|
|
|
enum Flags {
|
|
NONE = 0,
|
|
REFUSE_INTERNAL = 1 << 0, ///< Refuse falling back to internal memory when external RAM is full or unavailable.
|
|
ALLOW_FAILURE = 1 << 1, ///< Don't abort when memory allocation fails.
|
|
};
|
|
|
|
ExternalRAMAllocator() = default;
|
|
ExternalRAMAllocator(Flags flags) : flags_{flags} {}
|
|
template<class U> constexpr ExternalRAMAllocator(const ExternalRAMAllocator<U> &other) : flags_{other.flags} {}
|
|
|
|
T *allocate(size_t n) {
|
|
size_t size = n * sizeof(T);
|
|
T *ptr = nullptr;
|
|
#ifdef USE_ESP32
|
|
ptr = static_cast<T *>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM));
|
|
#endif
|
|
if (ptr == nullptr && (this->flags_ & Flags::REFUSE_INTERNAL) == 0)
|
|
ptr = static_cast<T *>(malloc(size)); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
if (ptr == nullptr && (this->flags_ & Flags::ALLOW_FAILURE) == 0)
|
|
abort();
|
|
return ptr;
|
|
}
|
|
|
|
void deallocate(T *p, size_t n) {
|
|
free(p); // NOLINT(cppcoreguidelines-owning-memory,cppcoreguidelines-no-malloc)
|
|
}
|
|
|
|
private:
|
|
Flags flags_{Flags::NONE};
|
|
};
|
|
|
|
/// @}
|
|
|
|
/// @name Deprecated functions
|
|
///@{
|
|
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
inline std::string hexencode(const uint8_t *data, uint32_t len) { return format_hex_pretty(data, len); }
|
|
|
|
template<typename T>
|
|
ESPDEPRECATED("hexencode() is deprecated, use format_hex_pretty() instead.", "2022.1")
|
|
std::string hexencode(const T &data) {
|
|
return hexencode(data.data(), data.size());
|
|
}
|
|
|
|
///@}
|
|
|
|
} // namespace esphome
|