esphome/esphome/components/wifi/wifi_component.cpp

699 lines
23 KiB
C++

#include "wifi_component.h"
#ifdef ARDUINO_ARCH_ESP32
#include <esp_wifi.h>
#endif
#ifdef ARDUINO_ARCH_ESP8266
#include <user_interface.h>
#endif
#include <utility>
#include <algorithm>
#include "lwip/err.h"
#include "lwip/dns.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "esphome/core/esphal.h"
#include "esphome/core/util.h"
#include "esphome/core/application.h"
#ifdef USE_CAPTIVE_PORTAL
#include "esphome/components/captive_portal/captive_portal.h"
#endif
#ifdef USE_IMPROV
#include "esphome/components/esp32_improv/esp32_improv_component.h"
#endif
namespace esphome {
namespace wifi {
static const char *const TAG = "wifi";
float WiFiComponent::get_setup_priority() const { return setup_priority::WIFI; }
void WiFiComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up WiFi...");
this->last_connected_ = millis();
this->wifi_pre_setup_();
uint32_t hash = fnv1_hash(App.get_compilation_time());
this->pref_ = global_preferences.make_preference<wifi::SavedWifiSettings>(hash, true);
SavedWifiSettings save{};
if (this->pref_.load(&save)) {
ESP_LOGD(TAG, "Loaded saved wifi settings: %s", save.ssid);
WiFiAP sta{};
sta.set_ssid(save.ssid);
sta.set_password(save.password);
this->set_sta(sta);
}
if (this->has_sta()) {
this->wifi_sta_pre_setup_();
if (this->output_power_.has_value() && !this->wifi_apply_output_power_(*this->output_power_)) {
ESP_LOGV(TAG, "Setting Output Power Option failed!");
}
if (!this->wifi_apply_power_save_()) {
ESP_LOGV(TAG, "Setting Power Save Option failed!");
}
if (this->fast_connect_) {
this->selected_ap_ = this->sta_[0];
this->start_connecting(this->selected_ap_, false);
} else {
this->start_scanning();
}
} else if (this->has_ap()) {
this->setup_ap_config_();
if (this->output_power_.has_value() && !this->wifi_apply_output_power_(*this->output_power_)) {
ESP_LOGV(TAG, "Setting Output Power Option failed!");
}
#ifdef USE_CAPTIVE_PORTAL
if (captive_portal::global_captive_portal != nullptr)
captive_portal::global_captive_portal->start();
#endif
}
#ifdef USE_IMPROV
if (esp32_improv::global_improv_component != nullptr)
if (this->wifi_mode_(true, {}))
esp32_improv::global_improv_component->start();
#endif
this->wifi_apply_hostname_();
#if defined(ARDUINO_ARCH_ESP32) && defined(USE_MDNS)
network_setup_mdns();
#endif
}
void WiFiComponent::loop() {
const uint32_t now = millis();
if (this->has_sta()) {
switch (this->state_) {
case WIFI_COMPONENT_STATE_COOLDOWN: {
this->status_set_warning();
if (millis() - this->action_started_ > 5000) {
if (this->fast_connect_) {
this->start_connecting(this->sta_[0], false);
} else {
this->start_scanning();
}
}
break;
}
case WIFI_COMPONENT_STATE_STA_SCANNING: {
this->status_set_warning();
this->check_scanning_finished();
break;
}
case WIFI_COMPONENT_STATE_STA_CONNECTING:
case WIFI_COMPONENT_STATE_STA_CONNECTING_2: {
this->status_set_warning();
this->check_connecting_finished();
break;
}
case WIFI_COMPONENT_STATE_STA_CONNECTED: {
if (!this->is_connected()) {
ESP_LOGW(TAG, "WiFi Connection lost... Reconnecting...");
this->state_ = WIFI_COMPONENT_STATE_STA_CONNECTING;
this->retry_connect();
} else {
this->status_clear_warning();
this->last_connected_ = now;
}
break;
}
case WIFI_COMPONENT_STATE_OFF:
case WIFI_COMPONENT_STATE_AP:
break;
}
if (this->has_ap() && !this->ap_setup_) {
if (now - this->last_connected_ > this->ap_timeout_) {
ESP_LOGI(TAG, "Starting fallback AP!");
this->setup_ap_config_();
#ifdef USE_CAPTIVE_PORTAL
if (captive_portal::global_captive_portal != nullptr)
captive_portal::global_captive_portal->start();
#endif
}
}
#ifdef USE_IMPROV
if (esp32_improv::global_improv_component != nullptr)
if (!this->is_connected())
if (this->wifi_mode_(true, {}))
esp32_improv::global_improv_component->start();
#endif
if (!this->has_ap() && this->reboot_timeout_ != 0) {
if (now - this->last_connected_ > this->reboot_timeout_) {
ESP_LOGE(TAG, "Can't connect to WiFi, rebooting...");
App.reboot();
}
}
}
network_tick_mdns();
}
WiFiComponent::WiFiComponent() { global_wifi_component = this; }
bool WiFiComponent::has_ap() const { return !this->ap_.get_ssid().empty(); }
bool WiFiComponent::has_sta() const { return !this->sta_.empty(); }
void WiFiComponent::set_fast_connect(bool fast_connect) { this->fast_connect_ = fast_connect; }
IPAddress WiFiComponent::get_ip_address() {
if (this->has_sta())
return this->wifi_sta_ip_();
if (this->has_ap())
return this->wifi_soft_ap_ip();
return {};
}
std::string WiFiComponent::get_use_address() const {
if (this->use_address_.empty()) {
return App.get_name() + ".local";
}
return this->use_address_;
}
void WiFiComponent::set_use_address(const std::string &use_address) { this->use_address_ = use_address; }
void WiFiComponent::setup_ap_config_() {
this->wifi_mode_({}, true);
if (this->ap_setup_)
return;
ESP_LOGCONFIG(TAG, "Setting up AP...");
ESP_LOGCONFIG(TAG, " AP SSID: '%s'", this->ap_.get_ssid().c_str());
ESP_LOGCONFIG(TAG, " AP Password: '%s'", this->ap_.get_password().c_str());
if (this->ap_.get_manual_ip().has_value()) {
auto manual = *this->ap_.get_manual_ip();
ESP_LOGCONFIG(TAG, " AP Static IP: '%s'", manual.static_ip.toString().c_str());
ESP_LOGCONFIG(TAG, " AP Gateway: '%s'", manual.gateway.toString().c_str());
ESP_LOGCONFIG(TAG, " AP Subnet: '%s'", manual.subnet.toString().c_str());
}
this->ap_setup_ = this->wifi_start_ap_(this->ap_);
ESP_LOGCONFIG(TAG, " IP Address: %s", this->wifi_soft_ap_ip().toString().c_str());
#if defined(ARDUINO_ARCH_ESP8266) && defined(USE_MDNS)
network_setup_mdns(this->wifi_soft_ap_ip(), 1);
#endif
if (!this->has_sta()) {
this->state_ = WIFI_COMPONENT_STATE_AP;
}
}
float WiFiComponent::get_loop_priority() const {
return 10.0f; // before other loop components
}
void WiFiComponent::set_ap(const WiFiAP &ap) { this->ap_ = ap; }
void WiFiComponent::add_sta(const WiFiAP &ap) { this->sta_.push_back(ap); }
void WiFiComponent::set_sta(const WiFiAP &ap) {
this->clear_sta();
this->add_sta(ap);
}
void WiFiComponent::clear_sta() { this->sta_.clear(); }
void WiFiComponent::save_wifi_sta(const std::string &ssid, const std::string &password) {
SavedWifiSettings save{};
strncpy(save.ssid, ssid.c_str(), sizeof(save.ssid));
strncpy(save.password, password.c_str(), sizeof(save.password));
this->pref_.save(&save);
WiFiAP sta{};
sta.set_ssid(ssid);
sta.set_password(password);
this->set_sta(sta);
}
void WiFiComponent::start_connecting(const WiFiAP &ap, bool two) {
ESP_LOGI(TAG, "WiFi Connecting to '%s'...", ap.get_ssid().c_str());
#ifdef ESPHOME_LOG_HAS_VERBOSE
ESP_LOGV(TAG, "Connection Params:");
ESP_LOGV(TAG, " SSID: '%s'", ap.get_ssid().c_str());
if (ap.get_bssid().has_value()) {
bssid_t b = *ap.get_bssid();
ESP_LOGV(TAG, " BSSID: %02X:%02X:%02X:%02X:%02X:%02X", b[0], b[1], b[2], b[3], b[4], b[5]);
} else {
ESP_LOGV(TAG, " BSSID: Not Set");
}
#ifdef ESPHOME_WIFI_WPA2_EAP
if (ap.get_eap().has_value()) {
ESP_LOGV(TAG, " WPA2 Enterprise authentication configured:");
EAPAuth eap_config = ap.get_eap().value();
ESP_LOGV(TAG, " Identity: " LOG_SECRET("'%s'"), eap_config.identity.c_str());
ESP_LOGV(TAG, " Username: " LOG_SECRET("'%s'"), eap_config.username.c_str());
ESP_LOGV(TAG, " Password: " LOG_SECRET("'%s'"), eap_config.password.c_str());
bool ca_cert_present = eap_config.ca_cert != nullptr && strlen(eap_config.ca_cert);
bool client_cert_present = eap_config.client_cert != nullptr && strlen(eap_config.client_cert);
bool client_key_present = eap_config.client_key != nullptr && strlen(eap_config.client_key);
ESP_LOGV(TAG, " CA Cert: %s", ca_cert_present ? "present" : "not present");
ESP_LOGV(TAG, " Client Cert: %s", client_cert_present ? "present" : "not present");
ESP_LOGV(TAG, " Client Key: %s", client_key_present ? "present" : "not present");
} else {
#endif
ESP_LOGV(TAG, " Password: " LOG_SECRET("'%s'"), ap.get_password().c_str());
#ifdef ESPHOME_WIFI_WPA2_EAP
}
#endif
if (ap.get_channel().has_value()) {
ESP_LOGV(TAG, " Channel: %u", *ap.get_channel());
} else {
ESP_LOGV(TAG, " Channel: Not Set");
}
if (ap.get_manual_ip().has_value()) {
ManualIP m = *ap.get_manual_ip();
ESP_LOGV(TAG, " Manual IP: Static IP=%s Gateway=%s Subnet=%s DNS1=%s DNS2=%s", m.static_ip.toString().c_str(),
m.gateway.toString().c_str(), m.subnet.toString().c_str(), m.dns1.toString().c_str(),
m.dns2.toString().c_str());
} else {
ESP_LOGV(TAG, " Using DHCP IP");
}
ESP_LOGV(TAG, " Hidden: %s", YESNO(ap.get_hidden()));
#endif
if (!this->wifi_sta_connect_(ap)) {
ESP_LOGE(TAG, "wifi_sta_connect_ failed!");
this->retry_connect();
return;
}
if (!two) {
this->state_ = WIFI_COMPONENT_STATE_STA_CONNECTING;
} else {
this->state_ = WIFI_COMPONENT_STATE_STA_CONNECTING_2;
}
this->action_started_ = millis();
}
void print_signal_bars(int8_t rssi, char *buf) {
// LOWER ONE QUARTER BLOCK
// Unicode: U+2582, UTF-8: E2 96 82
// LOWER HALF BLOCK
// Unicode: U+2584, UTF-8: E2 96 84
// LOWER THREE QUARTERS BLOCK
// Unicode: U+2586, UTF-8: E2 96 86
// FULL BLOCK
// Unicode: U+2588, UTF-8: E2 96 88
if (rssi >= -50) {
sprintf(buf, "\033[0;32m" // green
"\xe2\x96\x82"
"\xe2\x96\x84"
"\xe2\x96\x86"
"\xe2\x96\x88"
"\033[0m");
} else if (rssi >= -65) {
sprintf(buf, "\033[0;33m" // yellow
"\xe2\x96\x82"
"\xe2\x96\x84"
"\xe2\x96\x86"
"\033[0;37m"
"\xe2\x96\x88"
"\033[0m");
} else if (rssi >= -85) {
sprintf(buf, "\033[0;33m" // yellow
"\xe2\x96\x82"
"\xe2\x96\x84"
"\033[0;37m"
"\xe2\x96\x86"
"\xe2\x96\x88"
"\033[0m");
} else {
sprintf(buf, "\033[0;31m" // red
"\xe2\x96\x82"
"\033[0;37m"
"\xe2\x96\x84"
"\xe2\x96\x86"
"\xe2\x96\x88"
"\033[0m");
}
}
void WiFiComponent::print_connect_params_() {
uint8_t bssid[6] = {};
uint8_t *raw_bssid = WiFi.BSSID();
if (raw_bssid != nullptr)
memcpy(bssid, raw_bssid, sizeof(bssid));
ESP_LOGCONFIG(TAG, " SSID: " LOG_SECRET("'%s'"), WiFi.SSID().c_str());
ESP_LOGCONFIG(TAG, " IP Address: %s", WiFi.localIP().toString().c_str());
ESP_LOGCONFIG(TAG, " BSSID: " LOG_SECRET("%02X:%02X:%02X:%02X:%02X:%02X"), bssid[0], bssid[1], bssid[2], bssid[3],
bssid[4], bssid[5]);
ESP_LOGCONFIG(TAG, " Hostname: '%s'", App.get_name().c_str());
char signal_bars[50];
int8_t rssi = WiFi.RSSI();
print_signal_bars(rssi, signal_bars);
ESP_LOGCONFIG(TAG, " Signal strength: %d dB %s", rssi, signal_bars);
if (this->selected_ap_.get_bssid().has_value()) {
ESP_LOGV(TAG, " Priority: %.1f", this->get_sta_priority(*this->selected_ap_.get_bssid()));
}
ESP_LOGCONFIG(TAG, " Channel: %d", WiFi.channel());
ESP_LOGCONFIG(TAG, " Subnet: %s", WiFi.subnetMask().toString().c_str());
ESP_LOGCONFIG(TAG, " Gateway: %s", WiFi.gatewayIP().toString().c_str());
ESP_LOGCONFIG(TAG, " DNS1: %s", WiFi.dnsIP(0).toString().c_str());
ESP_LOGCONFIG(TAG, " DNS2: %s", WiFi.dnsIP(1).toString().c_str());
}
void WiFiComponent::start_scanning() {
this->action_started_ = millis();
ESP_LOGD(TAG, "Starting scan...");
this->wifi_scan_start_();
this->state_ = WIFI_COMPONENT_STATE_STA_SCANNING;
}
void WiFiComponent::check_scanning_finished() {
if (!this->scan_done_) {
if (millis() - this->action_started_ > 30000) {
ESP_LOGE(TAG, "Scan timeout!");
this->retry_connect();
}
return;
}
this->scan_done_ = false;
ESP_LOGD(TAG, "Found networks:");
if (this->scan_result_.empty()) {
ESP_LOGD(TAG, " No network found!");
this->retry_connect();
return;
}
for (auto &res : this->scan_result_) {
for (auto &ap : this->sta_) {
if (res.matches(ap)) {
res.set_matches(true);
if (!this->has_sta_priority(res.get_bssid())) {
this->set_sta_priority(res.get_bssid(), ap.get_priority());
}
res.set_priority(this->get_sta_priority(res.get_bssid()));
break;
}
}
}
std::stable_sort(this->scan_result_.begin(), this->scan_result_.end(),
[](const WiFiScanResult &a, const WiFiScanResult &b) {
// return true if a is better than b
if (a.get_matches() && !b.get_matches())
return true;
if (!a.get_matches() && b.get_matches())
return false;
if (a.get_matches() && b.get_matches()) {
// if both match, check priority
if (a.get_priority() != b.get_priority())
return a.get_priority() > b.get_priority();
}
return a.get_rssi() > b.get_rssi();
});
for (auto &res : this->scan_result_) {
char bssid_s[18];
auto bssid = res.get_bssid();
sprintf(bssid_s, "%02X:%02X:%02X:%02X:%02X:%02X", bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]);
char signal_bars[50];
print_signal_bars(res.get_rssi(), signal_bars);
if (res.get_matches()) {
ESP_LOGI(TAG, "- '%s' %s" LOG_SECRET("(%s) ") "%s", res.get_ssid().c_str(),
res.get_is_hidden() ? "(HIDDEN) " : "", bssid_s, signal_bars);
ESP_LOGD(TAG, " Channel: %u", res.get_channel());
ESP_LOGD(TAG, " RSSI: %d dB", res.get_rssi());
} else {
ESP_LOGD(TAG, "- " LOG_SECRET("'%s'") " " LOG_SECRET("(%s) ") "%s", res.get_ssid().c_str(), bssid_s, signal_bars);
}
}
if (!this->scan_result_[0].get_matches()) {
ESP_LOGW(TAG, "No matching network found!");
this->retry_connect();
return;
}
WiFiAP connect_params;
WiFiScanResult scan_res = this->scan_result_[0];
for (auto &config : this->sta_) {
// search for matching STA config, at least one will match (from checks before)
if (!scan_res.matches(config)) {
continue;
}
if (config.get_hidden()) {
// selected network is hidden, we use the data from the config
connect_params.set_hidden(true);
connect_params.set_ssid(config.get_ssid());
// don't set BSSID and channel, there might be multiple hidden networks
// but we can't know which one is the correct one. Rely on probe-req with just SSID.
} else {
// selected network is visible, we use the data from the scan
// limit the connect params to only connect to exactly this network
// (network selection is done during scan phase).
connect_params.set_hidden(false);
connect_params.set_ssid(scan_res.get_ssid());
connect_params.set_channel(scan_res.get_channel());
connect_params.set_bssid(scan_res.get_bssid());
}
// copy manual IP (if set)
connect_params.set_manual_ip(config.get_manual_ip());
#ifdef ESPHOME_WIFI_WPA2_EAP
// copy EAP parameters (if set)
connect_params.set_eap(config.get_eap());
#endif
// copy password (if set)
connect_params.set_password(config.get_password());
break;
}
yield();
this->selected_ap_ = connect_params;
this->start_connecting(connect_params, false);
}
void WiFiComponent::dump_config() {
ESP_LOGCONFIG(TAG, "WiFi:");
this->print_connect_params_();
}
void WiFiComponent::check_connecting_finished() {
wl_status_t status = this->wifi_sta_status_();
if (status == WL_CONNECTED) {
if (WiFi.SSID().equals("")) {
ESP_LOGW(TAG, "Incomplete connection.");
this->retry_connect();
return;
}
ESP_LOGI(TAG, "WiFi Connected!");
this->print_connect_params_();
if (this->has_ap()) {
#ifdef USE_CAPTIVE_PORTAL
if (this->is_captive_portal_active_()) {
captive_portal::global_captive_portal->end();
}
#endif
ESP_LOGD(TAG, "Disabling AP...");
this->wifi_mode_({}, false);
}
#ifdef USE_IMPROV
if (this->is_esp32_improv_active_()) {
esp32_improv::global_improv_component->stop();
}
#endif
#if defined(ARDUINO_ARCH_ESP8266) && defined(USE_MDNS)
network_setup_mdns(this->wifi_sta_ip_(), 0);
#endif
this->state_ = WIFI_COMPONENT_STATE_STA_CONNECTED;
this->num_retried_ = 0;
return;
}
uint32_t now = millis();
if (now - this->action_started_ > 30000) {
ESP_LOGW(TAG, "Timeout while connecting to WiFi.");
this->retry_connect();
return;
}
if (this->error_from_callback_) {
ESP_LOGW(TAG, "Error while connecting to network.");
this->retry_connect();
return;
}
if (status == WL_IDLE_STATUS || status == WL_DISCONNECTED || status == WL_CONNECTION_LOST) {
// WL_DISCONNECTED is set while not connected yet.
// WL_IDLE_STATUS is set while we're waiting for the IP address.
// WL_CONNECTION_LOST happens on the ESP32
return;
}
if (status == WL_NO_SSID_AVAIL) {
ESP_LOGW(TAG, "WiFi network can not be found anymore.");
this->retry_connect();
return;
}
if (status == WL_CONNECT_FAILED) {
ESP_LOGW(TAG, "Connecting to WiFi network failed. Are the credentials wrong?");
this->retry_connect();
return;
}
ESP_LOGW(TAG, "WiFi Unknown connection status %d", status);
}
void WiFiComponent::retry_connect() {
if (this->selected_ap_.get_bssid()) {
auto bssid = *this->selected_ap_.get_bssid();
float priority = this->get_sta_priority(bssid);
this->set_sta_priority(bssid, priority - 1.0f);
}
delay(10);
if (!this->is_captive_portal_active_() && !this->is_esp32_improv_active_() &&
(this->num_retried_ > 5 || this->error_from_callback_)) {
// If retry failed for more than 5 times, let's restart STA
ESP_LOGW(TAG, "Restarting WiFi adapter...");
this->wifi_mode_(false, {});
delay(100); // NOLINT
this->num_retried_ = 0;
} else {
this->num_retried_++;
}
this->error_from_callback_ = false;
if (this->state_ == WIFI_COMPONENT_STATE_STA_CONNECTING) {
yield();
this->state_ = WIFI_COMPONENT_STATE_STA_CONNECTING_2;
this->start_connecting(this->selected_ap_, true);
return;
}
this->state_ = WIFI_COMPONENT_STATE_COOLDOWN;
this->action_started_ = millis();
}
bool WiFiComponent::can_proceed() {
if (this->has_ap() && !this->has_sta()) {
return true;
}
return this->is_connected();
}
void WiFiComponent::set_reboot_timeout(uint32_t reboot_timeout) { this->reboot_timeout_ = reboot_timeout; }
bool WiFiComponent::is_connected() {
return this->state_ == WIFI_COMPONENT_STATE_STA_CONNECTED && this->wifi_sta_status_() == WL_CONNECTED &&
!this->error_from_callback_;
}
void WiFiComponent::set_power_save_mode(WiFiPowerSaveMode power_save) { this->power_save_ = power_save; }
std::string WiFiComponent::format_mac_addr(const uint8_t *mac) {
char buf[20];
sprintf(buf, "%02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return buf;
}
bool WiFiComponent::is_captive_portal_active_() {
#ifdef USE_CAPTIVE_PORTAL
return captive_portal::global_captive_portal != nullptr && captive_portal::global_captive_portal->is_active();
#else
return false;
#endif
}
bool WiFiComponent::is_esp32_improv_active_() {
#ifdef USE_IMPROV
return esp32_improv::global_improv_component != nullptr && esp32_improv::global_improv_component->is_active();
#else
return false;
#endif
}
void WiFiAP::set_ssid(const std::string &ssid) { this->ssid_ = ssid; }
void WiFiAP::set_bssid(bssid_t bssid) { this->bssid_ = bssid; }
void WiFiAP::set_bssid(optional<bssid_t> bssid) { this->bssid_ = bssid; }
void WiFiAP::set_password(const std::string &password) { this->password_ = password; }
#ifdef ESPHOME_WIFI_WPA2_EAP
void WiFiAP::set_eap(optional<EAPAuth> eap_auth) { this->eap_ = eap_auth; }
#endif
void WiFiAP::set_channel(optional<uint8_t> channel) { this->channel_ = channel; }
void WiFiAP::set_manual_ip(optional<ManualIP> manual_ip) { this->manual_ip_ = std::move(manual_ip); }
void WiFiAP::set_hidden(bool hidden) { this->hidden_ = hidden; }
const std::string &WiFiAP::get_ssid() const { return this->ssid_; }
const optional<bssid_t> &WiFiAP::get_bssid() const { return this->bssid_; }
const std::string &WiFiAP::get_password() const { return this->password_; }
#ifdef ESPHOME_WIFI_WPA2_EAP
const optional<EAPAuth> &WiFiAP::get_eap() const { return this->eap_; }
#endif
const optional<uint8_t> &WiFiAP::get_channel() const { return this->channel_; }
const optional<ManualIP> &WiFiAP::get_manual_ip() const { return this->manual_ip_; }
bool WiFiAP::get_hidden() const { return this->hidden_; }
WiFiScanResult::WiFiScanResult(const bssid_t &bssid, std::string ssid, uint8_t channel, int8_t rssi, bool with_auth,
bool is_hidden)
: bssid_(bssid),
ssid_(std::move(ssid)),
channel_(channel),
rssi_(rssi),
with_auth_(with_auth),
is_hidden_(is_hidden) {}
bool WiFiScanResult::matches(const WiFiAP &config) {
if (config.get_hidden()) {
// User configured a hidden network, only match actually hidden networks
// don't match SSID
if (!this->is_hidden_)
return false;
} else if (!config.get_ssid().empty()) {
// check if SSID matches
if (config.get_ssid() != this->ssid_)
return false;
} else {
// network is configured without SSID - match other settings
}
// If BSSID configured, only match for correct BSSIDs
if (config.get_bssid().has_value() && *config.get_bssid() != this->bssid_)
return false;
#ifdef ESPHOME_WIFI_WPA2_EAP
// BSSID requires auth but no PSK or EAP credentials given
if (this->with_auth_ && (config.get_password().empty() && !config.get_eap().has_value()))
return false;
// BSSID does not require auth, but PSK or EAP credentials given
if (!this->with_auth_ && (!config.get_password().empty() || config.get_eap().has_value()))
return false;
#else
// If PSK given, only match for networks with auth (and vice versa)
if (config.get_password().empty() == this->with_auth_)
return false;
#endif
// If channel configured, only match networks on that channel.
if (config.get_channel().has_value() && *config.get_channel() != this->channel_) {
return false;
}
return true;
}
bool WiFiScanResult::get_matches() const { return this->matches_; }
void WiFiScanResult::set_matches(bool matches) { this->matches_ = matches; }
const bssid_t &WiFiScanResult::get_bssid() const { return this->bssid_; }
const std::string &WiFiScanResult::get_ssid() const { return this->ssid_; }
uint8_t WiFiScanResult::get_channel() const { return this->channel_; }
int8_t WiFiScanResult::get_rssi() const { return this->rssi_; }
bool WiFiScanResult::get_with_auth() const { return this->with_auth_; }
bool WiFiScanResult::get_is_hidden() const { return this->is_hidden_; }
WiFiComponent *global_wifi_component; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
} // namespace wifi
} // namespace esphome