mirror of
https://github.com/esphome/esphome.git
synced 2024-12-11 07:54:54 +01:00
674 lines
21 KiB
Python
674 lines
21 KiB
Python
import math
|
|
|
|
import esphome.codegen as cg
|
|
import esphome.config_validation as cv
|
|
from esphome import automation
|
|
from esphome.components import mqtt
|
|
from esphome.const import (
|
|
CONF_DEVICE_CLASS,
|
|
CONF_ABOVE,
|
|
CONF_ACCURACY_DECIMALS,
|
|
CONF_ALPHA,
|
|
CONF_BELOW,
|
|
CONF_DISABLED_BY_DEFAULT,
|
|
CONF_EXPIRE_AFTER,
|
|
CONF_FILTERS,
|
|
CONF_FROM,
|
|
CONF_ICON,
|
|
CONF_ID,
|
|
CONF_INTERNAL,
|
|
CONF_LAST_RESET_TYPE,
|
|
CONF_ON_RAW_VALUE,
|
|
CONF_ON_VALUE,
|
|
CONF_ON_VALUE_RANGE,
|
|
CONF_SEND_EVERY,
|
|
CONF_SEND_FIRST_AT,
|
|
CONF_STATE_CLASS,
|
|
CONF_TO,
|
|
CONF_TRIGGER_ID,
|
|
CONF_UNIT_OF_MEASUREMENT,
|
|
CONF_WINDOW_SIZE,
|
|
CONF_NAME,
|
|
CONF_MQTT_ID,
|
|
CONF_FORCE_UPDATE,
|
|
LAST_RESET_TYPE_AUTO,
|
|
LAST_RESET_TYPE_NEVER,
|
|
LAST_RESET_TYPE_NONE,
|
|
DEVICE_CLASS_EMPTY,
|
|
DEVICE_CLASS_BATTERY,
|
|
DEVICE_CLASS_CARBON_MONOXIDE,
|
|
DEVICE_CLASS_CARBON_DIOXIDE,
|
|
DEVICE_CLASS_CURRENT,
|
|
DEVICE_CLASS_ENERGY,
|
|
DEVICE_CLASS_GAS,
|
|
DEVICE_CLASS_HUMIDITY,
|
|
DEVICE_CLASS_ILLUMINANCE,
|
|
DEVICE_CLASS_MONETARY,
|
|
DEVICE_CLASS_SIGNAL_STRENGTH,
|
|
DEVICE_CLASS_TEMPERATURE,
|
|
DEVICE_CLASS_POWER,
|
|
DEVICE_CLASS_POWER_FACTOR,
|
|
DEVICE_CLASS_PRESSURE,
|
|
DEVICE_CLASS_TIMESTAMP,
|
|
DEVICE_CLASS_VOLTAGE,
|
|
)
|
|
from esphome.core import CORE, coroutine_with_priority
|
|
from esphome.util import Registry
|
|
|
|
CODEOWNERS = ["@esphome/core"]
|
|
DEVICE_CLASSES = [
|
|
DEVICE_CLASS_EMPTY,
|
|
DEVICE_CLASS_BATTERY,
|
|
DEVICE_CLASS_CARBON_MONOXIDE,
|
|
DEVICE_CLASS_CARBON_DIOXIDE,
|
|
DEVICE_CLASS_CURRENT,
|
|
DEVICE_CLASS_ENERGY,
|
|
DEVICE_CLASS_GAS,
|
|
DEVICE_CLASS_HUMIDITY,
|
|
DEVICE_CLASS_ILLUMINANCE,
|
|
DEVICE_CLASS_MONETARY,
|
|
DEVICE_CLASS_SIGNAL_STRENGTH,
|
|
DEVICE_CLASS_TEMPERATURE,
|
|
DEVICE_CLASS_TIMESTAMP,
|
|
DEVICE_CLASS_POWER,
|
|
DEVICE_CLASS_POWER_FACTOR,
|
|
DEVICE_CLASS_PRESSURE,
|
|
DEVICE_CLASS_VOLTAGE,
|
|
]
|
|
|
|
sensor_ns = cg.esphome_ns.namespace("sensor")
|
|
StateClasses = sensor_ns.enum("StateClass")
|
|
STATE_CLASSES = {
|
|
"": StateClasses.STATE_CLASS_NONE,
|
|
"measurement": StateClasses.STATE_CLASS_MEASUREMENT,
|
|
}
|
|
validate_state_class = cv.enum(STATE_CLASSES, lower=True, space="_")
|
|
|
|
LastResetTypes = sensor_ns.enum("LastResetType")
|
|
LAST_RESET_TYPES = {
|
|
LAST_RESET_TYPE_NONE: LastResetTypes.LAST_RESET_TYPE_NONE,
|
|
LAST_RESET_TYPE_NEVER: LastResetTypes.LAST_RESET_TYPE_NEVER,
|
|
LAST_RESET_TYPE_AUTO: LastResetTypes.LAST_RESET_TYPE_AUTO,
|
|
}
|
|
validate_last_reset_type = cv.enum(LAST_RESET_TYPES, lower=True, space="_")
|
|
|
|
|
|
IS_PLATFORM_COMPONENT = True
|
|
|
|
|
|
def validate_send_first_at(value):
|
|
send_first_at = value.get(CONF_SEND_FIRST_AT)
|
|
send_every = value[CONF_SEND_EVERY]
|
|
if send_first_at is not None and send_first_at > send_every:
|
|
raise cv.Invalid(
|
|
"send_first_at must be smaller than or equal to send_every! {} <= {}"
|
|
"".format(send_first_at, send_every)
|
|
)
|
|
return value
|
|
|
|
|
|
FILTER_REGISTRY = Registry()
|
|
validate_filters = cv.validate_registry("filter", FILTER_REGISTRY)
|
|
|
|
|
|
def validate_datapoint(value):
|
|
if isinstance(value, dict):
|
|
return cv.Schema(
|
|
{
|
|
cv.Required(CONF_FROM): cv.float_,
|
|
cv.Required(CONF_TO): cv.float_,
|
|
}
|
|
)(value)
|
|
value = cv.string(value)
|
|
if "->" not in value:
|
|
raise cv.Invalid("Datapoint mapping must contain '->'")
|
|
a, b = value.split("->", 1)
|
|
a, b = a.strip(), b.strip()
|
|
return validate_datapoint({CONF_FROM: cv.float_(a), CONF_TO: cv.float_(b)})
|
|
|
|
|
|
# Base
|
|
sensor_ns = cg.esphome_ns.namespace("sensor")
|
|
Sensor = sensor_ns.class_("Sensor", cg.Nameable)
|
|
SensorPtr = Sensor.operator("ptr")
|
|
|
|
# Triggers
|
|
SensorStateTrigger = sensor_ns.class_(
|
|
"SensorStateTrigger", automation.Trigger.template(cg.float_)
|
|
)
|
|
SensorRawStateTrigger = sensor_ns.class_(
|
|
"SensorRawStateTrigger", automation.Trigger.template(cg.float_)
|
|
)
|
|
ValueRangeTrigger = sensor_ns.class_(
|
|
"ValueRangeTrigger", automation.Trigger.template(cg.float_), cg.Component
|
|
)
|
|
SensorPublishAction = sensor_ns.class_("SensorPublishAction", automation.Action)
|
|
|
|
# Filters
|
|
Filter = sensor_ns.class_("Filter")
|
|
MedianFilter = sensor_ns.class_("MedianFilter", Filter)
|
|
MinFilter = sensor_ns.class_("MinFilter", Filter)
|
|
MaxFilter = sensor_ns.class_("MaxFilter", Filter)
|
|
SlidingWindowMovingAverageFilter = sensor_ns.class_(
|
|
"SlidingWindowMovingAverageFilter", Filter
|
|
)
|
|
ExponentialMovingAverageFilter = sensor_ns.class_(
|
|
"ExponentialMovingAverageFilter", Filter
|
|
)
|
|
LambdaFilter = sensor_ns.class_("LambdaFilter", Filter)
|
|
OffsetFilter = sensor_ns.class_("OffsetFilter", Filter)
|
|
MultiplyFilter = sensor_ns.class_("MultiplyFilter", Filter)
|
|
FilterOutValueFilter = sensor_ns.class_("FilterOutValueFilter", Filter)
|
|
ThrottleFilter = sensor_ns.class_("ThrottleFilter", Filter)
|
|
DebounceFilter = sensor_ns.class_("DebounceFilter", Filter, cg.Component)
|
|
HeartbeatFilter = sensor_ns.class_("HeartbeatFilter", Filter, cg.Component)
|
|
DeltaFilter = sensor_ns.class_("DeltaFilter", Filter)
|
|
OrFilter = sensor_ns.class_("OrFilter", Filter)
|
|
CalibrateLinearFilter = sensor_ns.class_("CalibrateLinearFilter", Filter)
|
|
CalibratePolynomialFilter = sensor_ns.class_("CalibratePolynomialFilter", Filter)
|
|
SensorInRangeCondition = sensor_ns.class_("SensorInRangeCondition", Filter)
|
|
|
|
validate_unit_of_measurement = cv.string_strict
|
|
validate_accuracy_decimals = cv.int_
|
|
validate_icon = cv.icon
|
|
validate_device_class = cv.one_of(*DEVICE_CLASSES, lower=True, space="_")
|
|
|
|
SENSOR_SCHEMA = cv.NAMEABLE_SCHEMA.extend(cv.MQTT_COMPONENT_SCHEMA).extend(
|
|
{
|
|
cv.OnlyWith(CONF_MQTT_ID, "mqtt"): cv.declare_id(mqtt.MQTTSensorComponent),
|
|
cv.GenerateID(): cv.declare_id(Sensor),
|
|
cv.Optional(CONF_UNIT_OF_MEASUREMENT): validate_unit_of_measurement,
|
|
cv.Optional(CONF_ICON): validate_icon,
|
|
cv.Optional(CONF_ACCURACY_DECIMALS): validate_accuracy_decimals,
|
|
cv.Optional(CONF_DEVICE_CLASS): validate_device_class,
|
|
cv.Optional(CONF_STATE_CLASS): validate_state_class,
|
|
cv.Optional(CONF_LAST_RESET_TYPE): validate_last_reset_type,
|
|
cv.Optional(CONF_FORCE_UPDATE, default=False): cv.boolean,
|
|
cv.Optional(CONF_EXPIRE_AFTER): cv.All(
|
|
cv.requires_component("mqtt"),
|
|
cv.Any(None, cv.positive_time_period_milliseconds),
|
|
),
|
|
cv.Optional(CONF_FILTERS): validate_filters,
|
|
cv.Optional(CONF_ON_VALUE): automation.validate_automation(
|
|
{
|
|
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SensorStateTrigger),
|
|
}
|
|
),
|
|
cv.Optional(CONF_ON_RAW_VALUE): automation.validate_automation(
|
|
{
|
|
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SensorRawStateTrigger),
|
|
}
|
|
),
|
|
cv.Optional(CONF_ON_VALUE_RANGE): automation.validate_automation(
|
|
{
|
|
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(ValueRangeTrigger),
|
|
cv.Optional(CONF_ABOVE): cv.float_,
|
|
cv.Optional(CONF_BELOW): cv.float_,
|
|
},
|
|
cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW),
|
|
),
|
|
}
|
|
)
|
|
|
|
_UNDEF = object()
|
|
|
|
|
|
def sensor_schema(
|
|
unit_of_measurement: str = _UNDEF,
|
|
icon: str = _UNDEF,
|
|
accuracy_decimals: int = _UNDEF,
|
|
device_class: str = _UNDEF,
|
|
state_class: str = _UNDEF,
|
|
last_reset_type: str = _UNDEF,
|
|
) -> cv.Schema:
|
|
schema = SENSOR_SCHEMA
|
|
if unit_of_measurement is not _UNDEF:
|
|
schema = schema.extend(
|
|
{
|
|
cv.Optional(
|
|
CONF_UNIT_OF_MEASUREMENT, default=unit_of_measurement
|
|
): validate_unit_of_measurement
|
|
}
|
|
)
|
|
if icon is not _UNDEF:
|
|
schema = schema.extend({cv.Optional(CONF_ICON, default=icon): validate_icon})
|
|
if accuracy_decimals is not _UNDEF:
|
|
schema = schema.extend(
|
|
{
|
|
cv.Optional(
|
|
CONF_ACCURACY_DECIMALS, default=accuracy_decimals
|
|
): validate_accuracy_decimals,
|
|
}
|
|
)
|
|
if device_class is not _UNDEF:
|
|
schema = schema.extend(
|
|
{
|
|
cv.Optional(
|
|
CONF_DEVICE_CLASS, default=device_class
|
|
): validate_device_class
|
|
}
|
|
)
|
|
if state_class is not _UNDEF:
|
|
schema = schema.extend(
|
|
{cv.Optional(CONF_STATE_CLASS, default=state_class): validate_state_class}
|
|
)
|
|
if last_reset_type is not _UNDEF:
|
|
schema = schema.extend(
|
|
{
|
|
cv.Optional(
|
|
CONF_LAST_RESET_TYPE, default=last_reset_type
|
|
): validate_last_reset_type
|
|
}
|
|
)
|
|
return schema
|
|
|
|
|
|
@FILTER_REGISTRY.register("offset", OffsetFilter, cv.float_)
|
|
async def offset_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config)
|
|
|
|
|
|
@FILTER_REGISTRY.register("multiply", MultiplyFilter, cv.float_)
|
|
async def multiply_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config)
|
|
|
|
|
|
@FILTER_REGISTRY.register("filter_out", FilterOutValueFilter, cv.float_)
|
|
async def filter_out_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config)
|
|
|
|
|
|
MEDIAN_SCHEMA = cv.All(
|
|
cv.Schema(
|
|
{
|
|
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
|
|
}
|
|
),
|
|
validate_send_first_at,
|
|
)
|
|
|
|
|
|
@FILTER_REGISTRY.register("median", MedianFilter, MEDIAN_SCHEMA)
|
|
async def median_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(
|
|
filter_id,
|
|
config[CONF_WINDOW_SIZE],
|
|
config[CONF_SEND_EVERY],
|
|
config[CONF_SEND_FIRST_AT],
|
|
)
|
|
|
|
|
|
MIN_SCHEMA = cv.All(
|
|
cv.Schema(
|
|
{
|
|
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
|
|
}
|
|
),
|
|
validate_send_first_at,
|
|
)
|
|
|
|
|
|
@FILTER_REGISTRY.register("min", MinFilter, MIN_SCHEMA)
|
|
async def min_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(
|
|
filter_id,
|
|
config[CONF_WINDOW_SIZE],
|
|
config[CONF_SEND_EVERY],
|
|
config[CONF_SEND_FIRST_AT],
|
|
)
|
|
|
|
|
|
MAX_SCHEMA = cv.All(
|
|
cv.Schema(
|
|
{
|
|
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
|
|
}
|
|
),
|
|
validate_send_first_at,
|
|
)
|
|
|
|
|
|
@FILTER_REGISTRY.register("max", MaxFilter, MAX_SCHEMA)
|
|
async def max_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(
|
|
filter_id,
|
|
config[CONF_WINDOW_SIZE],
|
|
config[CONF_SEND_EVERY],
|
|
config[CONF_SEND_FIRST_AT],
|
|
)
|
|
|
|
|
|
SLIDING_AVERAGE_SCHEMA = cv.All(
|
|
cv.Schema(
|
|
{
|
|
cv.Optional(CONF_WINDOW_SIZE, default=15): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int,
|
|
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
|
|
}
|
|
),
|
|
validate_send_first_at,
|
|
)
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"sliding_window_moving_average",
|
|
SlidingWindowMovingAverageFilter,
|
|
SLIDING_AVERAGE_SCHEMA,
|
|
)
|
|
async def sliding_window_moving_average_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(
|
|
filter_id,
|
|
config[CONF_WINDOW_SIZE],
|
|
config[CONF_SEND_EVERY],
|
|
config[CONF_SEND_FIRST_AT],
|
|
)
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"exponential_moving_average",
|
|
ExponentialMovingAverageFilter,
|
|
cv.Schema(
|
|
{
|
|
cv.Optional(CONF_ALPHA, default=0.1): cv.positive_float,
|
|
cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int,
|
|
}
|
|
),
|
|
)
|
|
async def exponential_moving_average_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config[CONF_ALPHA], config[CONF_SEND_EVERY])
|
|
|
|
|
|
@FILTER_REGISTRY.register("lambda", LambdaFilter, cv.returning_lambda)
|
|
async def lambda_filter_to_code(config, filter_id):
|
|
lambda_ = await cg.process_lambda(
|
|
config, [(float, "x")], return_type=cg.optional.template(float)
|
|
)
|
|
return cg.new_Pvariable(filter_id, lambda_)
|
|
|
|
|
|
@FILTER_REGISTRY.register("delta", DeltaFilter, cv.float_)
|
|
async def delta_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config)
|
|
|
|
|
|
@FILTER_REGISTRY.register("or", OrFilter, validate_filters)
|
|
async def or_filter_to_code(config, filter_id):
|
|
filters = await build_filters(config)
|
|
return cg.new_Pvariable(filter_id, filters)
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"throttle", ThrottleFilter, cv.positive_time_period_milliseconds
|
|
)
|
|
async def throttle_filter_to_code(config, filter_id):
|
|
return cg.new_Pvariable(filter_id, config)
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"heartbeat", HeartbeatFilter, cv.positive_time_period_milliseconds
|
|
)
|
|
async def heartbeat_filter_to_code(config, filter_id):
|
|
var = cg.new_Pvariable(filter_id, config)
|
|
await cg.register_component(var, {})
|
|
return var
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"debounce", DebounceFilter, cv.positive_time_period_milliseconds
|
|
)
|
|
async def debounce_filter_to_code(config, filter_id):
|
|
var = cg.new_Pvariable(filter_id, config)
|
|
await cg.register_component(var, {})
|
|
return var
|
|
|
|
|
|
def validate_not_all_from_same(config):
|
|
if all(conf[CONF_FROM] == config[0][CONF_FROM] for conf in config):
|
|
raise cv.Invalid(
|
|
"The 'from' values of the calibrate_linear filter cannot all point "
|
|
"to the same value! Please add more values to the filter."
|
|
)
|
|
return config
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"calibrate_linear",
|
|
CalibrateLinearFilter,
|
|
cv.All(
|
|
cv.ensure_list(validate_datapoint), cv.Length(min=2), validate_not_all_from_same
|
|
),
|
|
)
|
|
async def calibrate_linear_filter_to_code(config, filter_id):
|
|
x = [conf[CONF_FROM] for conf in config]
|
|
y = [conf[CONF_TO] for conf in config]
|
|
k, b = fit_linear(x, y)
|
|
return cg.new_Pvariable(filter_id, k, b)
|
|
|
|
|
|
CONF_DATAPOINTS = "datapoints"
|
|
CONF_DEGREE = "degree"
|
|
|
|
|
|
def validate_calibrate_polynomial(config):
|
|
if config[CONF_DEGREE] >= len(config[CONF_DATAPOINTS]):
|
|
raise cv.Invalid(
|
|
"Degree is too high! Maximum possible degree with given datapoints is "
|
|
"{}".format(len(config[CONF_DATAPOINTS]) - 1),
|
|
[CONF_DEGREE],
|
|
)
|
|
return config
|
|
|
|
|
|
@FILTER_REGISTRY.register(
|
|
"calibrate_polynomial",
|
|
CalibratePolynomialFilter,
|
|
cv.All(
|
|
cv.Schema(
|
|
{
|
|
cv.Required(CONF_DATAPOINTS): cv.All(
|
|
cv.ensure_list(validate_datapoint), cv.Length(min=1)
|
|
),
|
|
cv.Required(CONF_DEGREE): cv.positive_int,
|
|
}
|
|
),
|
|
validate_calibrate_polynomial,
|
|
),
|
|
)
|
|
async def calibrate_polynomial_filter_to_code(config, filter_id):
|
|
x = [conf[CONF_FROM] for conf in config[CONF_DATAPOINTS]]
|
|
y = [conf[CONF_TO] for conf in config[CONF_DATAPOINTS]]
|
|
degree = config[CONF_DEGREE]
|
|
a = [[1] + [x_ ** (i + 1) for i in range(degree)] for x_ in x]
|
|
# Column vector
|
|
b = [[v] for v in y]
|
|
res = [v[0] for v in _lstsq(a, b)]
|
|
return cg.new_Pvariable(filter_id, res)
|
|
|
|
|
|
async def build_filters(config):
|
|
return await cg.build_registry_list(FILTER_REGISTRY, config)
|
|
|
|
|
|
async def setup_sensor_core_(var, config):
|
|
cg.add(var.set_name(config[CONF_NAME]))
|
|
cg.add(var.set_disabled_by_default(config[CONF_DISABLED_BY_DEFAULT]))
|
|
if CONF_INTERNAL in config:
|
|
cg.add(var.set_internal(config[CONF_INTERNAL]))
|
|
if CONF_DEVICE_CLASS in config:
|
|
cg.add(var.set_device_class(config[CONF_DEVICE_CLASS]))
|
|
if CONF_STATE_CLASS in config:
|
|
cg.add(var.set_state_class(config[CONF_STATE_CLASS]))
|
|
if CONF_UNIT_OF_MEASUREMENT in config:
|
|
cg.add(var.set_unit_of_measurement(config[CONF_UNIT_OF_MEASUREMENT]))
|
|
if CONF_ICON in config:
|
|
cg.add(var.set_icon(config[CONF_ICON]))
|
|
if CONF_ACCURACY_DECIMALS in config:
|
|
cg.add(var.set_accuracy_decimals(config[CONF_ACCURACY_DECIMALS]))
|
|
if CONF_LAST_RESET_TYPE in config:
|
|
cg.add(var.set_last_reset_type(config[CONF_LAST_RESET_TYPE]))
|
|
cg.add(var.set_force_update(config[CONF_FORCE_UPDATE]))
|
|
if config.get(CONF_FILTERS): # must exist and not be empty
|
|
filters = await build_filters(config[CONF_FILTERS])
|
|
cg.add(var.set_filters(filters))
|
|
|
|
for conf in config.get(CONF_ON_VALUE, []):
|
|
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
|
|
await automation.build_automation(trigger, [(float, "x")], conf)
|
|
for conf in config.get(CONF_ON_RAW_VALUE, []):
|
|
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
|
|
await automation.build_automation(trigger, [(float, "x")], conf)
|
|
for conf in config.get(CONF_ON_VALUE_RANGE, []):
|
|
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
|
|
await cg.register_component(trigger, conf)
|
|
if CONF_ABOVE in conf:
|
|
template_ = await cg.templatable(conf[CONF_ABOVE], [(float, "x")], float)
|
|
cg.add(trigger.set_min(template_))
|
|
if CONF_BELOW in conf:
|
|
template_ = await cg.templatable(conf[CONF_BELOW], [(float, "x")], float)
|
|
cg.add(trigger.set_max(template_))
|
|
await automation.build_automation(trigger, [(float, "x")], conf)
|
|
|
|
if CONF_MQTT_ID in config:
|
|
mqtt_ = cg.new_Pvariable(config[CONF_MQTT_ID], var)
|
|
await mqtt.register_mqtt_component(mqtt_, config)
|
|
|
|
if CONF_EXPIRE_AFTER in config:
|
|
if config[CONF_EXPIRE_AFTER] is None:
|
|
cg.add(mqtt_.disable_expire_after())
|
|
else:
|
|
cg.add(mqtt_.set_expire_after(config[CONF_EXPIRE_AFTER]))
|
|
|
|
|
|
async def register_sensor(var, config):
|
|
if not CORE.has_id(config[CONF_ID]):
|
|
var = cg.Pvariable(config[CONF_ID], var)
|
|
cg.add(cg.App.register_sensor(var))
|
|
await setup_sensor_core_(var, config)
|
|
|
|
|
|
async def new_sensor(config):
|
|
var = cg.new_Pvariable(config[CONF_ID])
|
|
await register_sensor(var, config)
|
|
return var
|
|
|
|
|
|
SENSOR_IN_RANGE_CONDITION_SCHEMA = cv.All(
|
|
{
|
|
cv.Required(CONF_ID): cv.use_id(Sensor),
|
|
cv.Optional(CONF_ABOVE): cv.float_,
|
|
cv.Optional(CONF_BELOW): cv.float_,
|
|
},
|
|
cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW),
|
|
)
|
|
|
|
|
|
@automation.register_condition(
|
|
"sensor.in_range", SensorInRangeCondition, SENSOR_IN_RANGE_CONDITION_SCHEMA
|
|
)
|
|
async def sensor_in_range_to_code(config, condition_id, template_arg, args):
|
|
paren = await cg.get_variable(config[CONF_ID])
|
|
var = cg.new_Pvariable(condition_id, template_arg, paren)
|
|
|
|
if CONF_ABOVE in config:
|
|
cg.add(var.set_min(config[CONF_ABOVE]))
|
|
if CONF_BELOW in config:
|
|
cg.add(var.set_max(config[CONF_BELOW]))
|
|
|
|
return var
|
|
|
|
|
|
def _mean(xs):
|
|
return sum(xs) / len(xs)
|
|
|
|
|
|
def _std(x):
|
|
return math.sqrt(sum((x_ - _mean(x)) ** 2 for x_ in x) / (len(x) - 1))
|
|
|
|
|
|
def _correlation_coeff(x, y):
|
|
m_x, m_y = _mean(x), _mean(y)
|
|
s_xy = sum((x_ - m_x) * (y_ - m_y) for x_, y_ in zip(x, y))
|
|
s_sq_x = sum((x_ - m_x) ** 2 for x_ in x)
|
|
s_sq_y = sum((y_ - m_y) ** 2 for y_ in y)
|
|
return s_xy / math.sqrt(s_sq_x * s_sq_y)
|
|
|
|
|
|
def fit_linear(x, y):
|
|
assert len(x) == len(y)
|
|
m_x, m_y = _mean(x), _mean(y)
|
|
r = _correlation_coeff(x, y)
|
|
k = r * (_std(y) / _std(x))
|
|
b = m_y - k * m_x
|
|
return k, b
|
|
|
|
|
|
def _mat_copy(m):
|
|
return [list(row) for row in m]
|
|
|
|
|
|
def _mat_transpose(m):
|
|
return _mat_copy(zip(*m))
|
|
|
|
|
|
def _mat_identity(n):
|
|
return [[int(i == j) for j in range(n)] for i in range(n)]
|
|
|
|
|
|
def _mat_dot(a, b):
|
|
b_t = _mat_transpose(b)
|
|
return [[sum(x * y for x, y in zip(row_a, col_b)) for col_b in b_t] for row_a in a]
|
|
|
|
|
|
def _mat_inverse(m):
|
|
n = len(m)
|
|
m = _mat_copy(m)
|
|
id = _mat_identity(n)
|
|
|
|
for diag in range(n):
|
|
# If diag element is 0, swap rows
|
|
if m[diag][diag] == 0:
|
|
for i in range(diag + 1, n):
|
|
if m[i][diag] != 0:
|
|
break
|
|
else:
|
|
raise ValueError("Singular matrix, inverse cannot be calculated!")
|
|
|
|
# Swap rows
|
|
m[diag], m[i] = m[i], m[diag]
|
|
id[diag], id[i] = id[i], id[diag]
|
|
|
|
# Scale row to 1 in diagonal
|
|
scaler = 1.0 / m[diag][diag]
|
|
for j in range(n):
|
|
m[diag][j] *= scaler
|
|
id[diag][j] *= scaler
|
|
|
|
# Subtract diag row
|
|
for i in range(n):
|
|
if i == diag:
|
|
continue
|
|
scaler = m[i][diag]
|
|
for j in range(n):
|
|
m[i][j] -= scaler * m[diag][j]
|
|
id[i][j] -= scaler * id[diag][j]
|
|
|
|
return id
|
|
|
|
|
|
def _lstsq(a, b):
|
|
# min_x ||b - ax||^2_2 => x = (a^T a)^{-1} a^T b
|
|
a_t = _mat_transpose(a)
|
|
x = _mat_inverse(_mat_dot(a_t, a))
|
|
return _mat_dot(_mat_dot(x, a_t), b)
|
|
|
|
|
|
@coroutine_with_priority(40.0)
|
|
async def to_code(config):
|
|
cg.add_define("USE_SENSOR")
|
|
cg.add_global(sensor_ns.using)
|