esphome/esphome/components/sensor/__init__.py
2021-08-17 21:43:51 +12:00

674 lines
21 KiB
Python

import math
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome import automation
from esphome.components import mqtt
from esphome.const import (
CONF_DEVICE_CLASS,
CONF_ABOVE,
CONF_ACCURACY_DECIMALS,
CONF_ALPHA,
CONF_BELOW,
CONF_DISABLED_BY_DEFAULT,
CONF_EXPIRE_AFTER,
CONF_FILTERS,
CONF_FROM,
CONF_ICON,
CONF_ID,
CONF_INTERNAL,
CONF_LAST_RESET_TYPE,
CONF_ON_RAW_VALUE,
CONF_ON_VALUE,
CONF_ON_VALUE_RANGE,
CONF_SEND_EVERY,
CONF_SEND_FIRST_AT,
CONF_STATE_CLASS,
CONF_TO,
CONF_TRIGGER_ID,
CONF_UNIT_OF_MEASUREMENT,
CONF_WINDOW_SIZE,
CONF_NAME,
CONF_MQTT_ID,
CONF_FORCE_UPDATE,
LAST_RESET_TYPE_AUTO,
LAST_RESET_TYPE_NEVER,
LAST_RESET_TYPE_NONE,
DEVICE_CLASS_EMPTY,
DEVICE_CLASS_BATTERY,
DEVICE_CLASS_CARBON_MONOXIDE,
DEVICE_CLASS_CARBON_DIOXIDE,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_ENERGY,
DEVICE_CLASS_GAS,
DEVICE_CLASS_HUMIDITY,
DEVICE_CLASS_ILLUMINANCE,
DEVICE_CLASS_MONETARY,
DEVICE_CLASS_SIGNAL_STRENGTH,
DEVICE_CLASS_TEMPERATURE,
DEVICE_CLASS_POWER,
DEVICE_CLASS_POWER_FACTOR,
DEVICE_CLASS_PRESSURE,
DEVICE_CLASS_TIMESTAMP,
DEVICE_CLASS_VOLTAGE,
)
from esphome.core import CORE, coroutine_with_priority
from esphome.util import Registry
CODEOWNERS = ["@esphome/core"]
DEVICE_CLASSES = [
DEVICE_CLASS_EMPTY,
DEVICE_CLASS_BATTERY,
DEVICE_CLASS_CARBON_MONOXIDE,
DEVICE_CLASS_CARBON_DIOXIDE,
DEVICE_CLASS_CURRENT,
DEVICE_CLASS_ENERGY,
DEVICE_CLASS_GAS,
DEVICE_CLASS_HUMIDITY,
DEVICE_CLASS_ILLUMINANCE,
DEVICE_CLASS_MONETARY,
DEVICE_CLASS_SIGNAL_STRENGTH,
DEVICE_CLASS_TEMPERATURE,
DEVICE_CLASS_TIMESTAMP,
DEVICE_CLASS_POWER,
DEVICE_CLASS_POWER_FACTOR,
DEVICE_CLASS_PRESSURE,
DEVICE_CLASS_VOLTAGE,
]
sensor_ns = cg.esphome_ns.namespace("sensor")
StateClasses = sensor_ns.enum("StateClass")
STATE_CLASSES = {
"": StateClasses.STATE_CLASS_NONE,
"measurement": StateClasses.STATE_CLASS_MEASUREMENT,
}
validate_state_class = cv.enum(STATE_CLASSES, lower=True, space="_")
LastResetTypes = sensor_ns.enum("LastResetType")
LAST_RESET_TYPES = {
LAST_RESET_TYPE_NONE: LastResetTypes.LAST_RESET_TYPE_NONE,
LAST_RESET_TYPE_NEVER: LastResetTypes.LAST_RESET_TYPE_NEVER,
LAST_RESET_TYPE_AUTO: LastResetTypes.LAST_RESET_TYPE_AUTO,
}
validate_last_reset_type = cv.enum(LAST_RESET_TYPES, lower=True, space="_")
IS_PLATFORM_COMPONENT = True
def validate_send_first_at(value):
send_first_at = value.get(CONF_SEND_FIRST_AT)
send_every = value[CONF_SEND_EVERY]
if send_first_at is not None and send_first_at > send_every:
raise cv.Invalid(
"send_first_at must be smaller than or equal to send_every! {} <= {}"
"".format(send_first_at, send_every)
)
return value
FILTER_REGISTRY = Registry()
validate_filters = cv.validate_registry("filter", FILTER_REGISTRY)
def validate_datapoint(value):
if isinstance(value, dict):
return cv.Schema(
{
cv.Required(CONF_FROM): cv.float_,
cv.Required(CONF_TO): cv.float_,
}
)(value)
value = cv.string(value)
if "->" not in value:
raise cv.Invalid("Datapoint mapping must contain '->'")
a, b = value.split("->", 1)
a, b = a.strip(), b.strip()
return validate_datapoint({CONF_FROM: cv.float_(a), CONF_TO: cv.float_(b)})
# Base
sensor_ns = cg.esphome_ns.namespace("sensor")
Sensor = sensor_ns.class_("Sensor", cg.Nameable)
SensorPtr = Sensor.operator("ptr")
# Triggers
SensorStateTrigger = sensor_ns.class_(
"SensorStateTrigger", automation.Trigger.template(cg.float_)
)
SensorRawStateTrigger = sensor_ns.class_(
"SensorRawStateTrigger", automation.Trigger.template(cg.float_)
)
ValueRangeTrigger = sensor_ns.class_(
"ValueRangeTrigger", automation.Trigger.template(cg.float_), cg.Component
)
SensorPublishAction = sensor_ns.class_("SensorPublishAction", automation.Action)
# Filters
Filter = sensor_ns.class_("Filter")
MedianFilter = sensor_ns.class_("MedianFilter", Filter)
MinFilter = sensor_ns.class_("MinFilter", Filter)
MaxFilter = sensor_ns.class_("MaxFilter", Filter)
SlidingWindowMovingAverageFilter = sensor_ns.class_(
"SlidingWindowMovingAverageFilter", Filter
)
ExponentialMovingAverageFilter = sensor_ns.class_(
"ExponentialMovingAverageFilter", Filter
)
LambdaFilter = sensor_ns.class_("LambdaFilter", Filter)
OffsetFilter = sensor_ns.class_("OffsetFilter", Filter)
MultiplyFilter = sensor_ns.class_("MultiplyFilter", Filter)
FilterOutValueFilter = sensor_ns.class_("FilterOutValueFilter", Filter)
ThrottleFilter = sensor_ns.class_("ThrottleFilter", Filter)
DebounceFilter = sensor_ns.class_("DebounceFilter", Filter, cg.Component)
HeartbeatFilter = sensor_ns.class_("HeartbeatFilter", Filter, cg.Component)
DeltaFilter = sensor_ns.class_("DeltaFilter", Filter)
OrFilter = sensor_ns.class_("OrFilter", Filter)
CalibrateLinearFilter = sensor_ns.class_("CalibrateLinearFilter", Filter)
CalibratePolynomialFilter = sensor_ns.class_("CalibratePolynomialFilter", Filter)
SensorInRangeCondition = sensor_ns.class_("SensorInRangeCondition", Filter)
validate_unit_of_measurement = cv.string_strict
validate_accuracy_decimals = cv.int_
validate_icon = cv.icon
validate_device_class = cv.one_of(*DEVICE_CLASSES, lower=True, space="_")
SENSOR_SCHEMA = cv.NAMEABLE_SCHEMA.extend(cv.MQTT_COMPONENT_SCHEMA).extend(
{
cv.OnlyWith(CONF_MQTT_ID, "mqtt"): cv.declare_id(mqtt.MQTTSensorComponent),
cv.GenerateID(): cv.declare_id(Sensor),
cv.Optional(CONF_UNIT_OF_MEASUREMENT): validate_unit_of_measurement,
cv.Optional(CONF_ICON): validate_icon,
cv.Optional(CONF_ACCURACY_DECIMALS): validate_accuracy_decimals,
cv.Optional(CONF_DEVICE_CLASS): validate_device_class,
cv.Optional(CONF_STATE_CLASS): validate_state_class,
cv.Optional(CONF_LAST_RESET_TYPE): validate_last_reset_type,
cv.Optional(CONF_FORCE_UPDATE, default=False): cv.boolean,
cv.Optional(CONF_EXPIRE_AFTER): cv.All(
cv.requires_component("mqtt"),
cv.Any(None, cv.positive_time_period_milliseconds),
),
cv.Optional(CONF_FILTERS): validate_filters,
cv.Optional(CONF_ON_VALUE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SensorStateTrigger),
}
),
cv.Optional(CONF_ON_RAW_VALUE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(SensorRawStateTrigger),
}
),
cv.Optional(CONF_ON_VALUE_RANGE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(ValueRangeTrigger),
cv.Optional(CONF_ABOVE): cv.float_,
cv.Optional(CONF_BELOW): cv.float_,
},
cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW),
),
}
)
_UNDEF = object()
def sensor_schema(
unit_of_measurement: str = _UNDEF,
icon: str = _UNDEF,
accuracy_decimals: int = _UNDEF,
device_class: str = _UNDEF,
state_class: str = _UNDEF,
last_reset_type: str = _UNDEF,
) -> cv.Schema:
schema = SENSOR_SCHEMA
if unit_of_measurement is not _UNDEF:
schema = schema.extend(
{
cv.Optional(
CONF_UNIT_OF_MEASUREMENT, default=unit_of_measurement
): validate_unit_of_measurement
}
)
if icon is not _UNDEF:
schema = schema.extend({cv.Optional(CONF_ICON, default=icon): validate_icon})
if accuracy_decimals is not _UNDEF:
schema = schema.extend(
{
cv.Optional(
CONF_ACCURACY_DECIMALS, default=accuracy_decimals
): validate_accuracy_decimals,
}
)
if device_class is not _UNDEF:
schema = schema.extend(
{
cv.Optional(
CONF_DEVICE_CLASS, default=device_class
): validate_device_class
}
)
if state_class is not _UNDEF:
schema = schema.extend(
{cv.Optional(CONF_STATE_CLASS, default=state_class): validate_state_class}
)
if last_reset_type is not _UNDEF:
schema = schema.extend(
{
cv.Optional(
CONF_LAST_RESET_TYPE, default=last_reset_type
): validate_last_reset_type
}
)
return schema
@FILTER_REGISTRY.register("offset", OffsetFilter, cv.float_)
async def offset_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config)
@FILTER_REGISTRY.register("multiply", MultiplyFilter, cv.float_)
async def multiply_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config)
@FILTER_REGISTRY.register("filter_out", FilterOutValueFilter, cv.float_)
async def filter_out_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config)
MEDIAN_SCHEMA = cv.All(
cv.Schema(
{
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
}
),
validate_send_first_at,
)
@FILTER_REGISTRY.register("median", MedianFilter, MEDIAN_SCHEMA)
async def median_filter_to_code(config, filter_id):
return cg.new_Pvariable(
filter_id,
config[CONF_WINDOW_SIZE],
config[CONF_SEND_EVERY],
config[CONF_SEND_FIRST_AT],
)
MIN_SCHEMA = cv.All(
cv.Schema(
{
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
}
),
validate_send_first_at,
)
@FILTER_REGISTRY.register("min", MinFilter, MIN_SCHEMA)
async def min_filter_to_code(config, filter_id):
return cg.new_Pvariable(
filter_id,
config[CONF_WINDOW_SIZE],
config[CONF_SEND_EVERY],
config[CONF_SEND_FIRST_AT],
)
MAX_SCHEMA = cv.All(
cv.Schema(
{
cv.Optional(CONF_WINDOW_SIZE, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_EVERY, default=5): cv.positive_not_null_int,
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
}
),
validate_send_first_at,
)
@FILTER_REGISTRY.register("max", MaxFilter, MAX_SCHEMA)
async def max_filter_to_code(config, filter_id):
return cg.new_Pvariable(
filter_id,
config[CONF_WINDOW_SIZE],
config[CONF_SEND_EVERY],
config[CONF_SEND_FIRST_AT],
)
SLIDING_AVERAGE_SCHEMA = cv.All(
cv.Schema(
{
cv.Optional(CONF_WINDOW_SIZE, default=15): cv.positive_not_null_int,
cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int,
cv.Optional(CONF_SEND_FIRST_AT, default=1): cv.positive_not_null_int,
}
),
validate_send_first_at,
)
@FILTER_REGISTRY.register(
"sliding_window_moving_average",
SlidingWindowMovingAverageFilter,
SLIDING_AVERAGE_SCHEMA,
)
async def sliding_window_moving_average_filter_to_code(config, filter_id):
return cg.new_Pvariable(
filter_id,
config[CONF_WINDOW_SIZE],
config[CONF_SEND_EVERY],
config[CONF_SEND_FIRST_AT],
)
@FILTER_REGISTRY.register(
"exponential_moving_average",
ExponentialMovingAverageFilter,
cv.Schema(
{
cv.Optional(CONF_ALPHA, default=0.1): cv.positive_float,
cv.Optional(CONF_SEND_EVERY, default=15): cv.positive_not_null_int,
}
),
)
async def exponential_moving_average_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config[CONF_ALPHA], config[CONF_SEND_EVERY])
@FILTER_REGISTRY.register("lambda", LambdaFilter, cv.returning_lambda)
async def lambda_filter_to_code(config, filter_id):
lambda_ = await cg.process_lambda(
config, [(float, "x")], return_type=cg.optional.template(float)
)
return cg.new_Pvariable(filter_id, lambda_)
@FILTER_REGISTRY.register("delta", DeltaFilter, cv.float_)
async def delta_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config)
@FILTER_REGISTRY.register("or", OrFilter, validate_filters)
async def or_filter_to_code(config, filter_id):
filters = await build_filters(config)
return cg.new_Pvariable(filter_id, filters)
@FILTER_REGISTRY.register(
"throttle", ThrottleFilter, cv.positive_time_period_milliseconds
)
async def throttle_filter_to_code(config, filter_id):
return cg.new_Pvariable(filter_id, config)
@FILTER_REGISTRY.register(
"heartbeat", HeartbeatFilter, cv.positive_time_period_milliseconds
)
async def heartbeat_filter_to_code(config, filter_id):
var = cg.new_Pvariable(filter_id, config)
await cg.register_component(var, {})
return var
@FILTER_REGISTRY.register(
"debounce", DebounceFilter, cv.positive_time_period_milliseconds
)
async def debounce_filter_to_code(config, filter_id):
var = cg.new_Pvariable(filter_id, config)
await cg.register_component(var, {})
return var
def validate_not_all_from_same(config):
if all(conf[CONF_FROM] == config[0][CONF_FROM] for conf in config):
raise cv.Invalid(
"The 'from' values of the calibrate_linear filter cannot all point "
"to the same value! Please add more values to the filter."
)
return config
@FILTER_REGISTRY.register(
"calibrate_linear",
CalibrateLinearFilter,
cv.All(
cv.ensure_list(validate_datapoint), cv.Length(min=2), validate_not_all_from_same
),
)
async def calibrate_linear_filter_to_code(config, filter_id):
x = [conf[CONF_FROM] for conf in config]
y = [conf[CONF_TO] for conf in config]
k, b = fit_linear(x, y)
return cg.new_Pvariable(filter_id, k, b)
CONF_DATAPOINTS = "datapoints"
CONF_DEGREE = "degree"
def validate_calibrate_polynomial(config):
if config[CONF_DEGREE] >= len(config[CONF_DATAPOINTS]):
raise cv.Invalid(
"Degree is too high! Maximum possible degree with given datapoints is "
"{}".format(len(config[CONF_DATAPOINTS]) - 1),
[CONF_DEGREE],
)
return config
@FILTER_REGISTRY.register(
"calibrate_polynomial",
CalibratePolynomialFilter,
cv.All(
cv.Schema(
{
cv.Required(CONF_DATAPOINTS): cv.All(
cv.ensure_list(validate_datapoint), cv.Length(min=1)
),
cv.Required(CONF_DEGREE): cv.positive_int,
}
),
validate_calibrate_polynomial,
),
)
async def calibrate_polynomial_filter_to_code(config, filter_id):
x = [conf[CONF_FROM] for conf in config[CONF_DATAPOINTS]]
y = [conf[CONF_TO] for conf in config[CONF_DATAPOINTS]]
degree = config[CONF_DEGREE]
a = [[1] + [x_ ** (i + 1) for i in range(degree)] for x_ in x]
# Column vector
b = [[v] for v in y]
res = [v[0] for v in _lstsq(a, b)]
return cg.new_Pvariable(filter_id, res)
async def build_filters(config):
return await cg.build_registry_list(FILTER_REGISTRY, config)
async def setup_sensor_core_(var, config):
cg.add(var.set_name(config[CONF_NAME]))
cg.add(var.set_disabled_by_default(config[CONF_DISABLED_BY_DEFAULT]))
if CONF_INTERNAL in config:
cg.add(var.set_internal(config[CONF_INTERNAL]))
if CONF_DEVICE_CLASS in config:
cg.add(var.set_device_class(config[CONF_DEVICE_CLASS]))
if CONF_STATE_CLASS in config:
cg.add(var.set_state_class(config[CONF_STATE_CLASS]))
if CONF_UNIT_OF_MEASUREMENT in config:
cg.add(var.set_unit_of_measurement(config[CONF_UNIT_OF_MEASUREMENT]))
if CONF_ICON in config:
cg.add(var.set_icon(config[CONF_ICON]))
if CONF_ACCURACY_DECIMALS in config:
cg.add(var.set_accuracy_decimals(config[CONF_ACCURACY_DECIMALS]))
if CONF_LAST_RESET_TYPE in config:
cg.add(var.set_last_reset_type(config[CONF_LAST_RESET_TYPE]))
cg.add(var.set_force_update(config[CONF_FORCE_UPDATE]))
if config.get(CONF_FILTERS): # must exist and not be empty
filters = await build_filters(config[CONF_FILTERS])
cg.add(var.set_filters(filters))
for conf in config.get(CONF_ON_VALUE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [(float, "x")], conf)
for conf in config.get(CONF_ON_RAW_VALUE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [(float, "x")], conf)
for conf in config.get(CONF_ON_VALUE_RANGE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await cg.register_component(trigger, conf)
if CONF_ABOVE in conf:
template_ = await cg.templatable(conf[CONF_ABOVE], [(float, "x")], float)
cg.add(trigger.set_min(template_))
if CONF_BELOW in conf:
template_ = await cg.templatable(conf[CONF_BELOW], [(float, "x")], float)
cg.add(trigger.set_max(template_))
await automation.build_automation(trigger, [(float, "x")], conf)
if CONF_MQTT_ID in config:
mqtt_ = cg.new_Pvariable(config[CONF_MQTT_ID], var)
await mqtt.register_mqtt_component(mqtt_, config)
if CONF_EXPIRE_AFTER in config:
if config[CONF_EXPIRE_AFTER] is None:
cg.add(mqtt_.disable_expire_after())
else:
cg.add(mqtt_.set_expire_after(config[CONF_EXPIRE_AFTER]))
async def register_sensor(var, config):
if not CORE.has_id(config[CONF_ID]):
var = cg.Pvariable(config[CONF_ID], var)
cg.add(cg.App.register_sensor(var))
await setup_sensor_core_(var, config)
async def new_sensor(config):
var = cg.new_Pvariable(config[CONF_ID])
await register_sensor(var, config)
return var
SENSOR_IN_RANGE_CONDITION_SCHEMA = cv.All(
{
cv.Required(CONF_ID): cv.use_id(Sensor),
cv.Optional(CONF_ABOVE): cv.float_,
cv.Optional(CONF_BELOW): cv.float_,
},
cv.has_at_least_one_key(CONF_ABOVE, CONF_BELOW),
)
@automation.register_condition(
"sensor.in_range", SensorInRangeCondition, SENSOR_IN_RANGE_CONDITION_SCHEMA
)
async def sensor_in_range_to_code(config, condition_id, template_arg, args):
paren = await cg.get_variable(config[CONF_ID])
var = cg.new_Pvariable(condition_id, template_arg, paren)
if CONF_ABOVE in config:
cg.add(var.set_min(config[CONF_ABOVE]))
if CONF_BELOW in config:
cg.add(var.set_max(config[CONF_BELOW]))
return var
def _mean(xs):
return sum(xs) / len(xs)
def _std(x):
return math.sqrt(sum((x_ - _mean(x)) ** 2 for x_ in x) / (len(x) - 1))
def _correlation_coeff(x, y):
m_x, m_y = _mean(x), _mean(y)
s_xy = sum((x_ - m_x) * (y_ - m_y) for x_, y_ in zip(x, y))
s_sq_x = sum((x_ - m_x) ** 2 for x_ in x)
s_sq_y = sum((y_ - m_y) ** 2 for y_ in y)
return s_xy / math.sqrt(s_sq_x * s_sq_y)
def fit_linear(x, y):
assert len(x) == len(y)
m_x, m_y = _mean(x), _mean(y)
r = _correlation_coeff(x, y)
k = r * (_std(y) / _std(x))
b = m_y - k * m_x
return k, b
def _mat_copy(m):
return [list(row) for row in m]
def _mat_transpose(m):
return _mat_copy(zip(*m))
def _mat_identity(n):
return [[int(i == j) for j in range(n)] for i in range(n)]
def _mat_dot(a, b):
b_t = _mat_transpose(b)
return [[sum(x * y for x, y in zip(row_a, col_b)) for col_b in b_t] for row_a in a]
def _mat_inverse(m):
n = len(m)
m = _mat_copy(m)
id = _mat_identity(n)
for diag in range(n):
# If diag element is 0, swap rows
if m[diag][diag] == 0:
for i in range(diag + 1, n):
if m[i][diag] != 0:
break
else:
raise ValueError("Singular matrix, inverse cannot be calculated!")
# Swap rows
m[diag], m[i] = m[i], m[diag]
id[diag], id[i] = id[i], id[diag]
# Scale row to 1 in diagonal
scaler = 1.0 / m[diag][diag]
for j in range(n):
m[diag][j] *= scaler
id[diag][j] *= scaler
# Subtract diag row
for i in range(n):
if i == diag:
continue
scaler = m[i][diag]
for j in range(n):
m[i][j] -= scaler * m[diag][j]
id[i][j] -= scaler * id[diag][j]
return id
def _lstsq(a, b):
# min_x ||b - ax||^2_2 => x = (a^T a)^{-1} a^T b
a_t = _mat_transpose(a)
x = _mat_inverse(_mat_dot(a_t, a))
return _mat_dot(_mat_dot(x, a_t), b)
@coroutine_with_priority(40.0)
async def to_code(config):
cg.add_define("USE_SENSOR")
cg.add_global(sensor_ns.using)