esphome/esphome/components/ens160_base/ens160_base.cpp
2024-05-16 15:22:40 +12:00

320 lines
9.8 KiB
C++

// ENS160 sensor with I2C interface from ScioSense
//
// Datasheet: https://www.sciosense.com/wp-content/uploads/documents/SC-001224-DS-7-ENS160-Datasheet.pdf
//
// Implementation based on:
// https://github.com/sciosense/ENS160_driver
#include "ens160_base.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
namespace esphome {
namespace ens160_base {
static const char *const TAG = "ens160";
static const uint8_t ENS160_BOOTING = 10;
static const uint16_t ENS160_PART_ID = 0x0160;
static const uint8_t ENS160_REG_PART_ID = 0x00;
static const uint8_t ENS160_REG_OPMODE = 0x10;
static const uint8_t ENS160_REG_CONFIG = 0x11;
static const uint8_t ENS160_REG_COMMAND = 0x12;
static const uint8_t ENS160_REG_TEMP_IN = 0x13;
static const uint8_t ENS160_REG_DATA_STATUS = 0x20;
static const uint8_t ENS160_REG_DATA_AQI = 0x21;
static const uint8_t ENS160_REG_DATA_TVOC = 0x22;
static const uint8_t ENS160_REG_DATA_ECO2 = 0x24;
static const uint8_t ENS160_REG_GPR_READ_0 = 0x48;
static const uint8_t ENS160_REG_GPR_READ_4 = ENS160_REG_GPR_READ_0 + 4;
static const uint8_t ENS160_COMMAND_NOP = 0x00;
static const uint8_t ENS160_COMMAND_CLRGPR = 0xCC;
static const uint8_t ENS160_COMMAND_GET_APPVER = 0x0E;
static const uint8_t ENS160_OPMODE_RESET = 0xF0;
static const uint8_t ENS160_OPMODE_IDLE = 0x01;
static const uint8_t ENS160_OPMODE_STD = 0x02;
static const uint8_t ENS160_DATA_STATUS_STATAS = 0x80;
static const uint8_t ENS160_DATA_STATUS_STATER = 0x40;
static const uint8_t ENS160_DATA_STATUS_VALIDITY = 0x0C;
static const uint8_t ENS160_DATA_STATUS_NEWDAT = 0x02;
static const uint8_t ENS160_DATA_STATUS_NEWGPR = 0x01;
// helps remove reserved bits in aqi data register
static const uint8_t ENS160_DATA_AQI = 0x07;
void ENS160Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up ENS160...");
// check part_id
uint16_t part_id;
if (!this->read_bytes(ENS160_REG_PART_ID, reinterpret_cast<uint8_t *>(&part_id), 2)) {
this->error_code_ = COMMUNICATION_FAILED;
this->mark_failed();
return;
}
if (part_id != ENS160_PART_ID) {
this->error_code_ = INVALID_ID;
this->mark_failed();
return;
}
// set mode to reset
if (!this->write_byte(ENS160_REG_OPMODE, ENS160_OPMODE_RESET)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
delay(ENS160_BOOTING);
// check status
uint8_t status_value;
if (!this->read_byte(ENS160_REG_DATA_STATUS, &status_value)) {
this->error_code_ = READ_FAILED;
this->mark_failed();
return;
}
this->validity_flag_ = static_cast<ValidityFlag>((ENS160_DATA_STATUS_VALIDITY & status_value) >> 2);
if (this->validity_flag_ == INVALID_OUTPUT) {
this->error_code_ = VALIDITY_INVALID;
this->mark_failed();
return;
}
// set mode to idle
if (!this->write_byte(ENS160_REG_OPMODE, ENS160_OPMODE_IDLE)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
// clear command
if (!this->write_byte(ENS160_REG_COMMAND, ENS160_COMMAND_NOP)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
if (!this->write_byte(ENS160_REG_COMMAND, ENS160_COMMAND_CLRGPR)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
// read firmware version
if (!this->write_byte(ENS160_REG_COMMAND, ENS160_COMMAND_GET_APPVER)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
uint8_t version_data[3];
if (!this->read_bytes(ENS160_REG_GPR_READ_4, version_data, 3)) {
this->error_code_ = READ_FAILED;
this->mark_failed();
return;
}
this->firmware_ver_major_ = version_data[0];
this->firmware_ver_minor_ = version_data[1];
this->firmware_ver_build_ = version_data[2];
// set mode to standard
if (!this->write_byte(ENS160_REG_OPMODE, ENS160_OPMODE_STD)) {
this->error_code_ = WRITE_FAILED;
this->mark_failed();
return;
}
// read opmode and check standard mode is achieved before finishing Setup
uint8_t op_mode;
if (!this->read_byte(ENS160_REG_OPMODE, &op_mode)) {
this->error_code_ = READ_FAILED;
this->mark_failed();
return;
}
if (op_mode != ENS160_OPMODE_STD) {
this->error_code_ = STD_OPMODE_FAILED;
this->mark_failed();
return;
}
}
void ENS160Component::update() {
uint8_t status_value, data_ready;
if (!this->read_byte(ENS160_REG_DATA_STATUS, &status_value)) {
ESP_LOGW(TAG, "Error reading status register");
this->status_set_warning();
return;
}
// verbose status logging
ESP_LOGV(TAG, "Status: ENS160 STATAS bit 0x%x",
(ENS160_DATA_STATUS_STATAS & (status_value)) == ENS160_DATA_STATUS_STATAS);
ESP_LOGV(TAG, "Status: ENS160 STATER bit 0x%x",
(ENS160_DATA_STATUS_STATER & (status_value)) == ENS160_DATA_STATUS_STATER);
ESP_LOGV(TAG, "Status: ENS160 VALIDITY FLAG 0x%02x", (ENS160_DATA_STATUS_VALIDITY & status_value) >> 2);
ESP_LOGV(TAG, "Status: ENS160 NEWDAT bit 0x%x",
(ENS160_DATA_STATUS_NEWDAT & (status_value)) == ENS160_DATA_STATUS_NEWDAT);
ESP_LOGV(TAG, "Status: ENS160 NEWGPR bit 0x%x",
(ENS160_DATA_STATUS_NEWGPR & (status_value)) == ENS160_DATA_STATUS_NEWGPR);
data_ready = ENS160_DATA_STATUS_NEWDAT & status_value;
this->validity_flag_ = static_cast<ValidityFlag>((ENS160_DATA_STATUS_VALIDITY & status_value) >> 2);
switch (validity_flag_) {
case NORMAL_OPERATION:
if (data_ready != ENS160_DATA_STATUS_NEWDAT) {
ESP_LOGD(TAG, "ENS160 readings unavailable - Normal Operation but readings not ready");
return;
}
break;
case INITIAL_STARTUP:
if (!this->initial_startup_) {
this->initial_startup_ = true;
ESP_LOGI(TAG, "ENS160 readings unavailable - 1 hour startup required after first power on");
}
return;
case WARMING_UP:
if (!this->warming_up_) {
this->warming_up_ = true;
ESP_LOGI(TAG, "ENS160 readings not available yet - Warming up requires 3 minutes");
this->send_env_data_();
}
return;
case INVALID_OUTPUT:
ESP_LOGE(TAG, "ENS160 Invalid Status - No Invalid Output");
this->status_set_warning();
return;
}
// read new data
uint16_t data_eco2;
if (!this->read_bytes(ENS160_REG_DATA_ECO2, reinterpret_cast<uint8_t *>(&data_eco2), 2)) {
ESP_LOGW(TAG, "Error reading eCO2 data register");
this->status_set_warning();
return;
}
if (this->co2_ != nullptr) {
this->co2_->publish_state(data_eco2);
}
uint16_t data_tvoc;
if (!this->read_bytes(ENS160_REG_DATA_TVOC, reinterpret_cast<uint8_t *>(&data_tvoc), 2)) {
ESP_LOGW(TAG, "Error reading TVOC data register");
this->status_set_warning();
return;
}
if (this->tvoc_ != nullptr) {
this->tvoc_->publish_state(data_tvoc);
}
uint8_t data_aqi;
if (!this->read_byte(ENS160_REG_DATA_AQI, &data_aqi)) {
ESP_LOGW(TAG, "Error reading AQI data register");
this->status_set_warning();
return;
}
if (this->aqi_ != nullptr) {
// remove reserved bits, just in case they are used in future
data_aqi = ENS160_DATA_AQI & data_aqi;
this->aqi_->publish_state(data_aqi);
}
this->status_clear_warning();
// set temperature and humidity compensation data
this->send_env_data_();
}
void ENS160Component::send_env_data_() {
if (this->temperature_ == nullptr && this->humidity_ == nullptr)
return;
float temperature = NAN;
if (this->temperature_ != nullptr)
temperature = this->temperature_->state;
if (std::isnan(temperature) || temperature < -40.0f || temperature > 85.0f) {
ESP_LOGW(TAG, "Invalid external temperature - compensation values not updated");
return;
} else {
ESP_LOGV(TAG, "External temperature compensation: %.1f°C", temperature);
}
float humidity = NAN;
if (this->humidity_ != nullptr)
humidity = this->humidity_->state;
if (std::isnan(humidity) || humidity < 0.0f || humidity > 100.0f) {
ESP_LOGW(TAG, "Invalid external humidity - compensation values not updated");
return;
} else {
ESP_LOGV(TAG, "External humidity compensation: %.1f%%", humidity);
}
uint16_t t = (uint16_t) ((temperature + 273.15f) * 64.0f);
uint16_t h = (uint16_t) (humidity * 512.0f);
uint8_t data[4];
data[0] = t & 0xff;
data[1] = (t >> 8) & 0xff;
data[2] = h & 0xff;
data[3] = (h >> 8) & 0xff;
if (!this->write_bytes(ENS160_REG_TEMP_IN, data, 4)) {
ESP_LOGE(TAG, "Error writing compensation values");
this->status_set_warning();
return;
}
}
void ENS160Component::dump_config() {
ESP_LOGCONFIG(TAG, "ENS160:");
switch (this->error_code_) {
case COMMUNICATION_FAILED:
ESP_LOGE(TAG, "Communication failed! Is the sensor connected?");
break;
case READ_FAILED:
ESP_LOGE(TAG, "Error reading from register");
break;
case WRITE_FAILED:
ESP_LOGE(TAG, "Error writing to register");
break;
case INVALID_ID:
ESP_LOGE(TAG, "Sensor reported an invalid ID. Is this a ENS160?");
break;
case VALIDITY_INVALID:
ESP_LOGE(TAG, "Invalid Device Status - No valid output");
break;
case STD_OPMODE_FAILED:
ESP_LOGE(TAG, "Device failed to achieve Standard Operating Mode");
break;
case NONE:
ESP_LOGD(TAG, "Setup successful");
break;
}
ESP_LOGI(TAG, "Firmware Version: %d.%d.%d", this->firmware_ver_major_, this->firmware_ver_minor_,
this->firmware_ver_build_);
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "CO2 Sensor:", this->co2_);
LOG_SENSOR(" ", "TVOC Sensor:", this->tvoc_);
LOG_SENSOR(" ", "AQI Sensor:", this->aqi_);
if (this->temperature_ != nullptr && this->humidity_ != nullptr) {
LOG_SENSOR(" ", " Temperature Compensation:", this->temperature_);
LOG_SENSOR(" ", " Humidity Compensation:", this->humidity_);
} else {
ESP_LOGCONFIG(TAG, " Compensation: Not configured");
}
}
} // namespace ens160_base
} // namespace esphome