craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/series/test_missing.py

843 lines
27 KiB
Python
Raw Normal View History

2021-01-30 22:29:33 +01:00
from datetime import datetime, timedelta
import numpy as np
2021-01-30 22:29:33 +01:00
import pytest
import pytz
from pandas._libs import iNaT
import pandas as pd
2021-01-30 22:29:33 +01:00
from pandas import (
Categorical,
DataFrame,
Index,
IntervalIndex,
NaT,
Series,
Timedelta,
Timestamp,
date_range,
isna,
)
import pandas._testing as tm
class TestSeriesMissingData:
2021-01-30 22:29:33 +01:00
def test_timedelta_fillna(self):
# GH 3371
s = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130102"),
Timestamp("20130103 9:01:01"),
]
)
td = s.diff()
# reg fillna
result = td.fillna(Timedelta(seconds=0))
expected = Series(
[
timedelta(0),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
# interpreted as seconds, deprecated
with pytest.raises(TypeError, match="Passing integers to fillna"):
td.fillna(1)
result = td.fillna(Timedelta(seconds=1))
expected = Series(
[
timedelta(seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(timedelta(days=1, seconds=1))
expected = Series(
[
timedelta(days=1, seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(np.timedelta64(int(1e9)))
expected = Series(
[
timedelta(seconds=1),
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
]
)
tm.assert_series_equal(result, expected)
result = td.fillna(NaT)
expected = Series(
[
NaT,
timedelta(0),
timedelta(1),
timedelta(days=1, seconds=9 * 3600 + 60 + 1),
],
dtype="m8[ns]",
)
tm.assert_series_equal(result, expected)
# ffill
td[2] = np.nan
result = td.ffill()
expected = td.fillna(Timedelta(seconds=0))
expected[0] = np.nan
tm.assert_series_equal(result, expected)
# bfill
td[2] = np.nan
result = td.bfill()
expected = td.fillna(Timedelta(seconds=0))
expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1)
tm.assert_series_equal(result, expected)
def test_datetime64_fillna(self):
s = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130102"),
Timestamp("20130103 9:01:01"),
]
)
s[2] = np.nan
# ffill
result = s.ffill()
expected = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130103 9:01:01"),
]
)
tm.assert_series_equal(result, expected)
# bfill
result = s.bfill()
expected = Series(
[
Timestamp("20130101"),
Timestamp("20130101"),
Timestamp("20130103 9:01:01"),
Timestamp("20130103 9:01:01"),
]
)
tm.assert_series_equal(result, expected)
# GH 6587
# make sure that we are treating as integer when filling
# this also tests inference of a datetime-like with NaT's
s = Series([pd.NaT, pd.NaT, "2013-08-05 15:30:00.000001"])
expected = Series(
[
"2013-08-05 15:30:00.000001",
"2013-08-05 15:30:00.000001",
"2013-08-05 15:30:00.000001",
],
dtype="M8[ns]",
)
result = s.fillna(method="backfill")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"])
def test_datetime64_tz_fillna(self, tz):
# DatetimeBlock
s = Series(
[
Timestamp("2011-01-01 10:00"),
pd.NaT,
Timestamp("2011-01-03 10:00"),
pd.NaT,
]
)
null_loc = pd.Series([False, True, False, True])
result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-02 10:00"),
]
)
tm.assert_series_equal(expected, result)
# check s is not changed
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna("AAA")
expected = Series(
[
Timestamp("2011-01-01 10:00"),
"AAA",
Timestamp("2011-01-03 10:00"),
"AAA",
],
dtype=object,
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00"),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{1: pd.Timestamp("2011-01-02 10:00"), 3: pd.Timestamp("2011-01-04 10:00")}
)
expected = Series(
[
Timestamp("2011-01-01 10:00"),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00"),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(
["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz=tz
)
s = pd.Series(idx)
assert s.dtype == f"datetime64[ns, {tz}]"
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-02 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz))
idx = pd.DatetimeIndex(
[
"2011-01-01 10:00",
"2011-01-02 10:00",
"2011-01-03 10:00",
"2011-01-02 10:00",
],
tz=tz,
)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(pd.Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime())
idx = pd.DatetimeIndex(
[
"2011-01-01 10:00",
"2011-01-02 10:00",
"2011-01-03 10:00",
"2011-01-02 10:00",
],
tz=tz,
)
expected = Series(idx)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna("AAA")
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
"AAA",
Timestamp("2011-01-03 10:00", tz=tz),
"AAA",
],
dtype=object,
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00"),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-04 10:00"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(
{
1: pd.Timestamp("2011-01-02 10:00", tz=tz),
3: pd.Timestamp("2011-01-04 10:00", tz=tz),
}
)
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2011-01-02 10:00", tz=tz),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2011-01-04 10:00", tz=tz),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
# filling with a naive/other zone, coerce to object
result = s.fillna(Timestamp("20130101"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2013-01-01"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2013-01-01"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
result = s.fillna(Timestamp("20130101", tz="US/Pacific"))
expected = Series(
[
Timestamp("2011-01-01 10:00", tz=tz),
Timestamp("2013-01-01", tz="US/Pacific"),
Timestamp("2011-01-03 10:00", tz=tz),
Timestamp("2013-01-01", tz="US/Pacific"),
]
)
tm.assert_series_equal(expected, result)
tm.assert_series_equal(pd.isna(s), null_loc)
def test_fillna_dt64tz_with_method(self):
# with timezone
# GH 15855
ser = pd.Series([pd.Timestamp("2012-11-11 00:00:00+01:00"), pd.NaT])
exp = pd.Series(
[
pd.Timestamp("2012-11-11 00:00:00+01:00"),
pd.Timestamp("2012-11-11 00:00:00+01:00"),
]
)
tm.assert_series_equal(ser.fillna(method="pad"), exp)
ser = pd.Series([pd.NaT, pd.Timestamp("2012-11-11 00:00:00+01:00")])
exp = pd.Series(
[
pd.Timestamp("2012-11-11 00:00:00+01:00"),
pd.Timestamp("2012-11-11 00:00:00+01:00"),
]
)
tm.assert_series_equal(ser.fillna(method="bfill"), exp)
def test_fillna_consistency(self):
# GH 16402
# fillna with a tz aware to a tz-naive, should result in object
s = Series([Timestamp("20130101"), pd.NaT])
result = s.fillna(Timestamp("20130101", tz="US/Eastern"))
expected = Series(
[Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")],
dtype="object",
)
tm.assert_series_equal(result, expected)
# where (we ignore the errors=)
result = s.where(
[True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
)
tm.assert_series_equal(result, expected)
result = s.where(
[True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore"
)
tm.assert_series_equal(result, expected)
# with a non-datetime
result = s.fillna("foo")
expected = Series([Timestamp("20130101"), "foo"])
tm.assert_series_equal(result, expected)
# assignment
s2 = s.copy()
s2[1] = "foo"
tm.assert_series_equal(s2, expected)
def test_datetime64tz_fillna_round_issue(self):
# GH 14872
data = pd.Series(
[pd.NaT, pd.NaT, datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc)]
)
filled = data.fillna(method="bfill")
expected = pd.Series(
[
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
datetime(2016, 12, 12, 22, 24, 6, 100001, tzinfo=pytz.utc),
]
)
tm.assert_series_equal(filled, expected)
def test_fillna_downcast(self):
# GH 15277
# infer int64 from float64
s = pd.Series([1.0, np.nan])
result = s.fillna(0, downcast="infer")
expected = pd.Series([1, 0])
tm.assert_series_equal(result, expected)
# infer int64 from float64 when fillna value is a dict
s = pd.Series([1.0, np.nan])
result = s.fillna({1: 0}, downcast="infer")
expected = pd.Series([1, 0])
tm.assert_series_equal(result, expected)
def test_fillna_int(self):
s = Series(np.random.randint(-100, 100, 50))
return_value = s.fillna(method="ffill", inplace=True)
assert return_value is None
tm.assert_series_equal(s.fillna(method="ffill", inplace=False), s)
def test_categorical_nan_equality(self):
cat = Series(Categorical(["a", "b", "c", np.nan]))
exp = Series([True, True, True, False])
res = cat == cat
tm.assert_series_equal(res, exp)
def test_categorical_nan_handling(self):
# NaNs are represented as -1 in labels
s = Series(Categorical(["a", "b", np.nan, "a"]))
tm.assert_index_equal(s.cat.categories, Index(["a", "b"]))
tm.assert_numpy_array_equal(
s.values.codes, np.array([0, 1, -1, 0], dtype=np.int8)
)
2021-01-30 22:29:33 +01:00
def test_fillna_nat(self):
series = Series([0, 1, 2, iNaT], dtype="M8[ns]")
filled = series.fillna(method="pad")
filled2 = series.fillna(value=series.values[2])
expected = series.copy()
expected.values[3] = expected.values[2]
tm.assert_series_equal(filled, expected)
tm.assert_series_equal(filled2, expected)
df = DataFrame({"A": series})
filled = df.fillna(method="pad")
filled2 = df.fillna(value=series.values[2])
expected = DataFrame({"A": expected})
tm.assert_frame_equal(filled, expected)
tm.assert_frame_equal(filled2, expected)
series = Series([iNaT, 0, 1, 2], dtype="M8[ns]")
filled = series.fillna(method="bfill")
filled2 = series.fillna(value=series[1])
expected = series.copy()
expected[0] = expected[1]
tm.assert_series_equal(filled, expected)
tm.assert_series_equal(filled2, expected)
df = DataFrame({"A": series})
filled = df.fillna(method="bfill")
filled2 = df.fillna(value=series[1])
expected = DataFrame({"A": expected})
tm.assert_frame_equal(filled, expected)
tm.assert_frame_equal(filled2, expected)
def test_isna_for_inf(self):
s = Series(["a", np.inf, np.nan, pd.NA, 1.0])
with pd.option_context("mode.use_inf_as_na", True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, True, False])
de = Series(["a", 1.0], index=[0, 4])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
def test_isnull_for_inf_deprecated(self):
# gh-17115
s = Series(["a", np.inf, np.nan, 1.0])
with pd.option_context("mode.use_inf_as_null", True):
r = s.isna()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(["a", 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
2021-01-30 22:29:33 +01:00
def test_fillna(self, datetime_series):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
tm.assert_series_equal(ts, ts.fillna(method="ffill"))
ts[2] = np.NaN
exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(method="ffill"), exp)
exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(method="backfill"), exp)
exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index)
tm.assert_series_equal(ts.fillna(value=5), exp)
msg = "Must specify a fill 'value' or 'method'"
with pytest.raises(ValueError, match=msg):
ts.fillna()
msg = "Cannot specify both 'value' and 'method'"
with pytest.raises(ValueError, match=msg):
datetime_series.fillna(value=0, method="ffill")
# GH 5703
s1 = Series([np.nan])
s2 = Series([1])
result = s1.fillna(s2)
expected = Series([1.0])
tm.assert_series_equal(result, expected)
result = s1.fillna({})
tm.assert_series_equal(result, s1)
result = s1.fillna(Series((), dtype=object))
tm.assert_series_equal(result, s1)
result = s2.fillna(s1)
tm.assert_series_equal(result, s2)
result = s1.fillna({0: 1})
tm.assert_series_equal(result, expected)
result = s1.fillna({1: 1})
tm.assert_series_equal(result, Series([np.nan]))
result = s1.fillna({0: 1, 1: 1})
tm.assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}))
tm.assert_series_equal(result, expected)
result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5]))
tm.assert_series_equal(result, s1)
s1 = Series([0, 1, 2], list("abc"))
s2 = Series([0, np.nan, 2], list("bac"))
result = s2.fillna(s1)
expected = Series([0, 0, 2.0], list("bac"))
tm.assert_series_equal(result, expected)
# limit
s = Series(np.nan, index=[0, 1, 2])
result = s.fillna(999, limit=1)
expected = Series([999, np.nan, np.nan], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
result = s.fillna(999, limit=2)
expected = Series([999, 999, np.nan], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
# GH 9043
# make sure a string representation of int/float values can be filled
# correctly without raising errors or being converted
vals = ["0", "1.5", "-0.3"]
for val in vals:
s = Series([0, 1, np.nan, np.nan, 4], dtype="float64")
result = s.fillna(val)
expected = Series([0, 1, val, val, 4], dtype="object")
tm.assert_series_equal(result, expected)
def test_fillna_bug(self):
x = Series([np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"])
filled = x.fillna(method="ffill")
expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], x.index)
tm.assert_series_equal(filled, expected)
filled = x.fillna(method="bfill")
expected = Series([1.0, 1.0, 3.0, 3.0, np.nan], x.index)
tm.assert_series_equal(filled, expected)
def test_fillna_invalid_method(self, datetime_series):
try:
datetime_series.fillna(method="ffil")
except ValueError as inst:
assert "ffil" in str(inst)
def test_ffill(self):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
ts[2] = np.NaN
tm.assert_series_equal(ts.ffill(), ts.fillna(method="ffill"))
def test_ffill_mixed_dtypes_without_missing_data(self):
# GH14956
series = pd.Series([datetime(2015, 1, 1, tzinfo=pytz.utc), 1])
result = series.ffill()
tm.assert_series_equal(series, result)
def test_bfill(self):
ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5))
ts[2] = np.NaN
tm.assert_series_equal(ts.bfill(), ts.fillna(method="bfill"))
def test_timedelta64_nan(self):
td = Series([timedelta(days=i) for i in range(10)])
# nan ops on timedeltas
td1 = td.copy()
td1[0] = np.nan
assert isna(td1[0])
assert td1[0].value == iNaT
td1[0] = td[0]
assert not isna(td1[0])
# GH#16674 iNaT is treated as an integer when given by the user
td1[1] = iNaT
assert not isna(td1[1])
assert td1.dtype == np.object_
assert td1[1] == iNaT
td1[1] = td[1]
assert not isna(td1[1])
td1[2] = NaT
assert isna(td1[2])
assert td1[2].value == iNaT
td1[2] = td[2]
assert not isna(td1[2])
# FIXME: don't leave commented-out
# boolean setting
# this doesn't work, not sure numpy even supports it
# result = td[(td>np.timedelta64(timedelta(days=3))) &
# td<np.timedelta64(timedelta(days=7)))] = np.nan
# assert isna(result).sum() == 7
# NumPy limitation =(
# def test_logical_range_select(self):
# np.random.seed(12345)
# selector = -0.5 <= datetime_series <= 0.5
# expected = (datetime_series >= -0.5) & (datetime_series <= 0.5)
# tm.assert_series_equal(selector, expected)
2021-01-30 22:29:33 +01:00
def test_dropna_empty(self):
s = Series([], dtype=object)
assert len(s.dropna()) == 0
return_value = s.dropna(inplace=True)
assert return_value is None
assert len(s) == 0
# invalid axis
msg = "No axis named 1 for object type Series"
with pytest.raises(ValueError, match=msg):
s.dropna(axis=1)
def test_datetime64_tz_dropna(self):
# DatetimeBlock
s = Series(
[
Timestamp("2011-01-01 10:00"),
pd.NaT,
Timestamp("2011-01-03 10:00"),
pd.NaT,
]
)
result = s.dropna()
expected = Series(
[Timestamp("2011-01-01 10:00"), Timestamp("2011-01-03 10:00")], index=[0, 2]
)
tm.assert_series_equal(result, expected)
# DatetimeBlockTZ
idx = pd.DatetimeIndex(
["2011-01-01 10:00", pd.NaT, "2011-01-03 10:00", pd.NaT], tz="Asia/Tokyo"
)
s = pd.Series(idx)
assert s.dtype == "datetime64[ns, Asia/Tokyo]"
result = s.dropna()
expected = Series(
[
Timestamp("2011-01-01 10:00", tz="Asia/Tokyo"),
Timestamp("2011-01-03 10:00", tz="Asia/Tokyo"),
],
index=[0, 2],
)
assert result.dtype == "datetime64[ns, Asia/Tokyo]"
tm.assert_series_equal(result, expected)
def test_dropna_no_nan(self):
for s in [Series([1, 2, 3], name="x"), Series([False, True, False], name="x")]:
result = s.dropna()
tm.assert_series_equal(result, s)
assert result is not s
s2 = s.copy()
return_value = s2.dropna(inplace=True)
assert return_value is None
tm.assert_series_equal(s2, s)
def test_dropna_intervals(self):
s = Series(
[np.nan, 1, 2, 3],
IntervalIndex.from_arrays([np.nan, 0, 1, 2], [np.nan, 1, 2, 3]),
)
result = s.dropna()
expected = s.iloc[1:]
tm.assert_series_equal(result, expected)
def test_valid(self, datetime_series):
ts = datetime_series.copy()
ts.index = ts.index._with_freq(None)
ts[::2] = np.NaN
result = ts.dropna()
assert len(result) == ts.count()
tm.assert_series_equal(result, ts[1::2])
tm.assert_series_equal(result, ts[pd.notna(ts)])
2021-01-30 22:29:33 +01:00
def test_isna(self):
ser = Series([0, 5.4, 3, np.nan, -0.001])
expected = Series([False, False, False, True, False])
tm.assert_series_equal(ser.isna(), expected)
ser = Series(["hi", "", np.nan])
expected = Series([False, False, True])
tm.assert_series_equal(ser.isna(), expected)
def test_notna(self):
ser = Series([0, 5.4, 3, np.nan, -0.001])
expected = Series([True, True, True, False, True])
tm.assert_series_equal(ser.notna(), expected)
ser = Series(["hi", "", np.nan])
expected = Series([True, True, False])
tm.assert_series_equal(ser.notna(), expected)
def test_pad_nan(self):
x = Series(
[np.nan, 1.0, np.nan, 3.0, np.nan], ["z", "a", "b", "c", "d"], dtype=float
)
return_value = x.fillna(method="pad", inplace=True)
assert return_value is None
expected = Series(
[np.nan, 1.0, 1.0, 3.0, 3.0], ["z", "a", "b", "c", "d"], dtype=float
)
tm.assert_series_equal(x[1:], expected[1:])
assert np.isnan(x[0]), np.isnan(expected[0])
def test_pad_require_monotonicity(self):
rng = date_range("1/1/2000", "3/1/2000", freq="B")
# neither monotonic increasing or decreasing
rng2 = rng[[1, 0, 2]]
msg = "index must be monotonic increasing or decreasing"
with pytest.raises(ValueError, match=msg):
rng2.get_indexer(rng, method="pad")
def test_dropna_preserve_name(self, datetime_series):
datetime_series[:5] = np.nan
result = datetime_series.dropna()
assert result.name == datetime_series.name
name = datetime_series.name
ts = datetime_series.copy()
return_value = ts.dropna(inplace=True)
assert return_value is None
assert ts.name == name
def test_series_fillna_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index)
result = result.fillna(method="pad", limit=5)
expected = s[:2].reindex(index).fillna(method="pad")
expected[-3:] = np.nan
tm.assert_series_equal(result, expected)
result = s[-2:].reindex(index)
result = result.fillna(method="bfill", limit=5)
expected = s[-2:].reindex(index).fillna(method="backfill")
expected[:3] = np.nan
tm.assert_series_equal(result, expected)
def test_series_pad_backfill_limit(self):
index = np.arange(10)
s = Series(np.random.randn(10), index=index)
result = s[:2].reindex(index, method="pad", limit=5)
expected = s[:2].reindex(index).fillna(method="pad")
expected[-3:] = np.nan
tm.assert_series_equal(result, expected)
result = s[-2:].reindex(index, method="backfill", limit=5)
2021-01-30 22:29:33 +01:00
expected = s[-2:].reindex(index).fillna(method="backfill")
expected[:3] = np.nan
tm.assert_series_equal(result, expected)