craftbeerpi4-pione/venv3/lib/python3.7/site-packages/pandas/plotting/_matplotlib/hist.py
2021-03-03 23:49:41 +01:00

445 lines
12 KiB
Python

import numpy as np
from pandas.core.dtypes.common import is_integer, is_list_like
from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass
from pandas.core.dtypes.missing import isna, remove_na_arraylike
from pandas.io.formats.printing import pprint_thing
from pandas.plotting._matplotlib.core import LinePlot, MPLPlot
from pandas.plotting._matplotlib.tools import _flatten, _set_ticks_props, _subplots
class HistPlot(LinePlot):
_kind = "hist"
def __init__(self, data, bins=10, bottom=0, **kwargs):
self.bins = bins # use mpl default
self.bottom = bottom
# Do not call LinePlot.__init__ which may fill nan
MPLPlot.__init__(self, data, **kwargs)
def _args_adjust(self):
if is_integer(self.bins):
# create common bin edge
values = self.data._convert(datetime=True)._get_numeric_data()
values = np.ravel(values)
values = values[~isna(values)]
_, self.bins = np.histogram(
values, bins=self.bins, range=self.kwds.get("range", None)
)
if is_list_like(self.bottom):
self.bottom = np.array(self.bottom)
@classmethod
def _plot(
cls,
ax,
y,
style=None,
bins=None,
bottom=0,
column_num=0,
stacking_id=None,
**kwds,
):
if column_num == 0:
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
y = y[~isna(y)]
base = np.zeros(len(bins) - 1)
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
# ignore style
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
cls._update_stacker(ax, stacking_id, n)
return patches
def _make_plot(self):
colors = self._get_colors()
stacking_id = self._get_stacking_id()
for i, (label, y) in enumerate(self._iter_data()):
ax = self._get_ax(i)
kwds = self.kwds.copy()
label = pprint_thing(label)
kwds["label"] = label
style, kwds = self._apply_style_colors(colors, kwds, i, label)
if style is not None:
kwds["style"] = style
kwds = self._make_plot_keywords(kwds, y)
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
# and each sub-array (10,) will be called in each iteration. If users only
# provide 1D array, we assume the same weights is used for all iterations
weights = kwds.get("weights", None)
if weights is not None and np.ndim(weights) != 1:
kwds["weights"] = weights[:, i]
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
self._add_legend_handle(artists[0], label, index=i)
def _make_plot_keywords(self, kwds, y):
"""merge BoxPlot/KdePlot properties to passed kwds"""
# y is required for KdePlot
kwds["bottom"] = self.bottom
kwds["bins"] = self.bins
return kwds
def _post_plot_logic(self, ax, data):
if self.orientation == "horizontal":
ax.set_xlabel("Frequency")
else:
ax.set_ylabel("Frequency")
@property
def orientation(self):
if self.kwds.get("orientation", None) == "horizontal":
return "horizontal"
else:
return "vertical"
class KdePlot(HistPlot):
_kind = "kde"
orientation = "vertical"
def __init__(self, data, bw_method=None, ind=None, **kwargs):
MPLPlot.__init__(self, data, **kwargs)
self.bw_method = bw_method
self.ind = ind
def _args_adjust(self):
pass
def _get_ind(self, y):
if self.ind is None:
# np.nanmax() and np.nanmin() ignores the missing values
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
1000,
)
elif is_integer(self.ind):
sample_range = np.nanmax(y) - np.nanmin(y)
ind = np.linspace(
np.nanmin(y) - 0.5 * sample_range,
np.nanmax(y) + 0.5 * sample_range,
self.ind,
)
else:
ind = self.ind
return ind
@classmethod
def _plot(
cls,
ax,
y,
style=None,
bw_method=None,
ind=None,
column_num=None,
stacking_id=None,
**kwds,
):
from scipy.stats import gaussian_kde
y = remove_na_arraylike(y)
gkde = gaussian_kde(y, bw_method=bw_method)
y = gkde.evaluate(ind)
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
return lines
def _make_plot_keywords(self, kwds, y):
kwds["bw_method"] = self.bw_method
kwds["ind"] = self._get_ind(y)
return kwds
def _post_plot_logic(self, ax, data):
ax.set_ylabel("Density")
def _grouped_plot(
plotf,
data,
column=None,
by=None,
numeric_only=True,
figsize=None,
sharex=True,
sharey=True,
layout=None,
rot=0,
ax=None,
**kwargs,
):
if figsize == "default":
# allowed to specify mpl default with 'default'
raise ValueError(
"figsize='default' is no longer supported. "
"Specify figure size by tuple instead"
)
grouped = data.groupby(by)
if column is not None:
grouped = grouped[column]
naxes = len(grouped)
fig, axes = _subplots(
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
)
_axes = _flatten(axes)
for i, (key, group) in enumerate(grouped):
ax = _axes[i]
if numeric_only and isinstance(group, ABCDataFrame):
group = group._get_numeric_data()
plotf(group, ax, **kwargs)
ax.set_title(pprint_thing(key))
return fig, axes
def _grouped_hist(
data,
column=None,
by=None,
ax=None,
bins=50,
figsize=None,
layout=None,
sharex=False,
sharey=False,
rot=90,
grid=True,
xlabelsize=None,
xrot=None,
ylabelsize=None,
yrot=None,
legend=False,
**kwargs,
):
"""
Grouped histogram
Parameters
----------
data : Series/DataFrame
column : object, optional
by : object, optional
ax : axes, optional
bins : int, default 50
figsize : tuple, optional
layout : optional
sharex : bool, default False
sharey : bool, default False
rot : int, default 90
grid : bool, default True
legend: : bool, default False
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
Returns
-------
collection of Matplotlib Axes
"""
if legend:
assert "label" not in kwargs
if data.ndim == 1:
kwargs["label"] = data.name
elif column is None:
kwargs["label"] = data.columns
else:
kwargs["label"] = column
def plot_group(group, ax):
ax.hist(group.dropna().values, bins=bins, **kwargs)
if legend:
ax.legend()
if xrot is None:
xrot = rot
fig, axes = _grouped_plot(
plot_group,
data,
column=column,
by=by,
sharex=sharex,
sharey=sharey,
ax=ax,
figsize=figsize,
layout=layout,
rot=rot,
)
_set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
fig.subplots_adjust(
bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
)
return axes
def hist_series(
self,
by=None,
ax=None,
grid=True,
xlabelsize=None,
xrot=None,
ylabelsize=None,
yrot=None,
figsize=None,
bins=10,
legend: bool = False,
**kwds,
):
import matplotlib.pyplot as plt
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is None:
if kwds.get("layout", None) is not None:
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
# hack until the plotting interface is a bit more unified
fig = kwds.pop(
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
)
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
fig.set_size_inches(*figsize, forward=True)
if ax is None:
ax = fig.gca()
elif ax.get_figure() != fig:
raise AssertionError("passed axis not bound to passed figure")
values = self.dropna().values
if legend:
kwds["label"] = self.name
ax.hist(values, bins=bins, **kwds)
if legend:
ax.legend()
ax.grid(grid)
axes = np.array([ax])
_set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
else:
if "figure" in kwds:
raise ValueError(
"Cannot pass 'figure' when using the "
"'by' argument, since a new 'Figure' instance will be created"
)
axes = _grouped_hist(
self,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
if hasattr(axes, "ndim"):
if axes.ndim == 1 and len(axes) == 1:
return axes[0]
return axes
def hist_frame(
data,
column=None,
by=None,
grid=True,
xlabelsize=None,
xrot=None,
ylabelsize=None,
yrot=None,
ax=None,
sharex=False,
sharey=False,
figsize=None,
layout=None,
bins=10,
legend: bool = False,
**kwds,
):
if legend and "label" in kwds:
raise ValueError("Cannot use both legend and label")
if by is not None:
axes = _grouped_hist(
data,
column=column,
by=by,
ax=ax,
grid=grid,
figsize=figsize,
sharex=sharex,
sharey=sharey,
layout=layout,
bins=bins,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
legend=legend,
**kwds,
)
return axes
if column is not None:
if not isinstance(column, (list, np.ndarray, ABCIndexClass)):
column = [column]
data = data[column]
data = data._get_numeric_data()
naxes = len(data.columns)
if naxes == 0:
raise ValueError("hist method requires numerical columns, nothing to plot.")
fig, axes = _subplots(
naxes=naxes,
ax=ax,
squeeze=False,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
)
_axes = _flatten(axes)
can_set_label = "label" not in kwds
for i, col in enumerate(data.columns):
ax = _axes[i]
if legend and can_set_label:
kwds["label"] = col
ax.hist(data[col].dropna().values, bins=bins, **kwds)
ax.set_title(col)
ax.grid(grid)
if legend:
ax.legend()
_set_ticks_props(
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
)
fig.subplots_adjust(wspace=0.3, hspace=0.3)
return axes