craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/extension/test_sparse.py
2021-01-30 22:29:33 +01:00

429 lines
14 KiB
Python

import numpy as np
import pytest
from pandas.errors import PerformanceWarning
from pandas.core.dtypes.common import is_object_dtype
import pandas as pd
from pandas import SparseDtype
import pandas._testing as tm
from pandas.arrays import SparseArray
from pandas.tests.extension import base
def make_data(fill_value):
if np.isnan(fill_value):
data = np.random.uniform(size=100)
else:
data = np.random.randint(1, 100, size=100)
if data[0] == data[1]:
data[0] += 1
data[2::3] = fill_value
return data
@pytest.fixture
def dtype():
return SparseDtype()
@pytest.fixture(params=[0, np.nan])
def data(request):
"""Length-100 PeriodArray for semantics test."""
res = SparseArray(make_data(request.param), fill_value=request.param)
return res
@pytest.fixture
def data_for_twos(request):
return SparseArray(np.ones(100) * 2)
@pytest.fixture(params=[0, np.nan])
def data_missing(request):
"""Length 2 array with [NA, Valid]"""
return SparseArray([np.nan, 1], fill_value=request.param)
@pytest.fixture(params=[0, np.nan])
def data_repeated(request):
"""Return different versions of data for count times"""
def gen(count):
for _ in range(count):
yield SparseArray(make_data(request.param), fill_value=request.param)
yield gen
@pytest.fixture(params=[0, np.nan])
def data_for_sorting(request):
return SparseArray([2, 3, 1], fill_value=request.param)
@pytest.fixture(params=[0, np.nan])
def data_missing_for_sorting(request):
return SparseArray([2, np.nan, 1], fill_value=request.param)
@pytest.fixture
def na_value():
return np.nan
@pytest.fixture
def na_cmp():
return lambda left, right: pd.isna(left) and pd.isna(right)
@pytest.fixture(params=[0, np.nan])
def data_for_grouping(request):
return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param)
class BaseSparseTests:
def _check_unsupported(self, data):
if data.dtype == SparseDtype(int, 0):
pytest.skip("Can't store nan in int array.")
@pytest.mark.xfail(reason="SparseArray does not support setitem")
def test_ravel(self, data):
super().test_ravel(data)
class TestDtype(BaseSparseTests, base.BaseDtypeTests):
def test_array_type_with_arg(self, data, dtype):
assert dtype.construct_array_type() is SparseArray
class TestInterface(BaseSparseTests, base.BaseInterfaceTests):
def test_no_values_attribute(self, data):
pytest.skip("We have values")
def test_copy(self, data):
# __setitem__ does not work, so we only have a smoke-test
data.copy()
def test_view(self, data):
# __setitem__ does not work, so we only have a smoke-test
data.view()
class TestConstructors(BaseSparseTests, base.BaseConstructorsTests):
pass
class TestReshaping(BaseSparseTests, base.BaseReshapingTests):
def test_concat_mixed_dtypes(self, data):
# https://github.com/pandas-dev/pandas/issues/20762
# This should be the same, aside from concat([sparse, float])
df1 = pd.DataFrame({"A": data[:3]})
df2 = pd.DataFrame({"A": [1, 2, 3]})
df3 = pd.DataFrame({"A": ["a", "b", "c"]}).astype("category")
dfs = [df1, df2, df3]
# dataframes
result = pd.concat(dfs)
expected = pd.concat(
[x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs]
)
self.assert_frame_equal(result, expected)
def test_concat_columns(self, data, na_value):
self._check_unsupported(data)
super().test_concat_columns(data, na_value)
def test_concat_extension_arrays_copy_false(self, data, na_value):
self._check_unsupported(data)
super().test_concat_extension_arrays_copy_false(data, na_value)
def test_align(self, data, na_value):
self._check_unsupported(data)
super().test_align(data, na_value)
def test_align_frame(self, data, na_value):
self._check_unsupported(data)
super().test_align_frame(data, na_value)
def test_align_series_frame(self, data, na_value):
self._check_unsupported(data)
super().test_align_series_frame(data, na_value)
def test_merge(self, data, na_value):
self._check_unsupported(data)
super().test_merge(data, na_value)
class TestGetitem(BaseSparseTests, base.BaseGetitemTests):
def test_get(self, data):
s = pd.Series(data, index=[2 * i for i in range(len(data))])
if np.isnan(s.values.fill_value):
assert np.isnan(s.get(4)) and np.isnan(s.iloc[2])
else:
assert s.get(4) == s.iloc[2]
assert s.get(2) == s.iloc[1]
def test_reindex(self, data, na_value):
self._check_unsupported(data)
super().test_reindex(data, na_value)
# Skipping TestSetitem, since we don't implement it.
class TestMissing(BaseSparseTests, base.BaseMissingTests):
def test_isna(self, data_missing):
expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value))
expected = SparseArray([True, False], dtype=expected_dtype)
result = pd.isna(data_missing)
self.assert_equal(result, expected)
result = pd.Series(data_missing).isna()
expected = pd.Series(expected)
self.assert_series_equal(result, expected)
# GH 21189
result = pd.Series(data_missing).drop([0, 1]).isna()
expected = pd.Series([], dtype=expected_dtype)
self.assert_series_equal(result, expected)
def test_fillna_limit_pad(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_pad(data_missing)
def test_fillna_limit_backfill(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_backfill(data_missing)
def test_fillna_series_method(self, data_missing):
with tm.assert_produces_warning(PerformanceWarning):
super().test_fillna_limit_backfill(data_missing)
@pytest.mark.skip(reason="Unsupported")
def test_fillna_series(self):
# this one looks doable.
pass
def test_fillna_frame(self, data_missing):
# Have to override to specify that fill_value will change.
fill_value = data_missing[1]
result = pd.DataFrame({"A": data_missing, "B": [1, 2]}).fillna(fill_value)
if pd.isna(data_missing.fill_value):
dtype = SparseDtype(data_missing.dtype, fill_value)
else:
dtype = data_missing.dtype
expected = pd.DataFrame(
{
"A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype),
"B": [1, 2],
}
)
self.assert_frame_equal(result, expected)
class TestMethods(BaseSparseTests, base.BaseMethodsTests):
def test_combine_le(self, data_repeated):
# We return a Series[SparseArray].__le__ returns a
# Series[Sparse[bool]]
# rather than Series[bool]
orig_data1, orig_data2 = data_repeated(2)
s1 = pd.Series(orig_data1)
s2 = pd.Series(orig_data2)
result = s1.combine(s2, lambda x1, x2: x1 <= x2)
expected = pd.Series(
SparseArray(
[a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))],
fill_value=False,
)
)
self.assert_series_equal(result, expected)
val = s1.iloc[0]
result = s1.combine(val, lambda x1, x2: x1 <= x2)
expected = pd.Series(
SparseArray([a <= val for a in list(orig_data1)], fill_value=False)
)
self.assert_series_equal(result, expected)
def test_fillna_copy_frame(self, data_missing):
arr = data_missing.take([1, 1])
df = pd.DataFrame({"A": arr})
filled_val = df.iloc[0, 0]
result = df.fillna(filled_val)
assert df.values.base is not result.values.base
assert df.A._values.to_dense() is arr.to_dense()
def test_fillna_copy_series(self, data_missing):
arr = data_missing.take([1, 1])
ser = pd.Series(arr)
filled_val = ser[0]
result = ser.fillna(filled_val)
assert ser._values is not result._values
assert ser._values.to_dense() is arr.to_dense()
@pytest.mark.skip(reason="Not Applicable")
def test_fillna_length_mismatch(self, data_missing):
pass
def test_where_series(self, data, na_value):
assert data[0] != data[1]
cls = type(data)
a, b = data[:2]
ser = pd.Series(cls._from_sequence([a, a, b, b], dtype=data.dtype))
cond = np.array([True, True, False, False])
result = ser.where(cond)
new_dtype = SparseDtype("float", 0.0)
expected = pd.Series(
cls._from_sequence([a, a, na_value, na_value], dtype=new_dtype)
)
self.assert_series_equal(result, expected)
other = cls._from_sequence([a, b, a, b], dtype=data.dtype)
cond = np.array([True, False, True, True])
result = ser.where(cond, other)
expected = pd.Series(cls._from_sequence([a, b, b, b], dtype=data.dtype))
self.assert_series_equal(result, expected)
def test_combine_first(self, data):
if data.dtype.subtype == "int":
# Right now this is upcasted to float, just like combine_first
# for Series[int]
pytest.skip("TODO(SparseArray.__setitem__ will preserve dtype.")
super().test_combine_first(data)
def test_searchsorted(self, data_for_sorting, as_series):
with tm.assert_produces_warning(PerformanceWarning):
super().test_searchsorted(data_for_sorting, as_series)
def test_shift_0_periods(self, data):
# GH#33856 shifting with periods=0 should return a copy, not same obj
result = data.shift(0)
data._sparse_values[0] = data._sparse_values[1]
assert result._sparse_values[0] != result._sparse_values[1]
@pytest.mark.parametrize(
"method", ["argmax", "argmin"],
)
def test_argmin_argmax_all_na(self, method, data, na_value):
# overriding because Sparse[int64, 0] cannot handle na_value
self._check_unsupported(data)
super().test_argmin_argmax_all_na(method, data, na_value)
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
def test_equals(self, data, na_value, as_series, box):
self._check_unsupported(data)
super().test_equals(data, na_value, as_series, box)
class TestCasting(BaseSparseTests, base.BaseCastingTests):
def test_astype_object_series(self, all_data):
# Unlike the base class, we do not expect the resulting Block
# to be ObjectBlock
ser = pd.Series(all_data, name="A")
result = ser.astype(object)
assert is_object_dtype(result._data.blocks[0].dtype)
def test_astype_object_frame(self, all_data):
# Unlike the base class, we do not expect the resulting Block
# to be ObjectBlock
df = pd.DataFrame({"A": all_data})
result = df.astype(object)
assert is_object_dtype(result._data.blocks[0].dtype)
# FIXME: these currently fail; dont leave commented-out
# check that we can compare the dtypes
# comp = result.dtypes.equals(df.dtypes)
# assert not comp.any()
def test_astype_str(self, data):
result = pd.Series(data[:5]).astype(str)
expected_dtype = pd.SparseDtype(str, str(data.fill_value))
expected = pd.Series([str(x) for x in data[:5]], dtype=expected_dtype)
self.assert_series_equal(result, expected)
@pytest.mark.xfail(raises=TypeError, reason="no sparse StringDtype")
def test_astype_string(self, data):
super().test_astype_string(data)
class TestArithmeticOps(BaseSparseTests, base.BaseArithmeticOpsTests):
series_scalar_exc = None
frame_scalar_exc = None
divmod_exc = None
series_array_exc = None
def _skip_if_different_combine(self, data):
if data.fill_value == 0:
# arith ops call on dtype.fill_value so that the sparsity
# is maintained. Combine can't be called on a dtype in
# general, so we can't make the expected. This is tested elsewhere
raise pytest.skip("Incorrected expected from Series.combine")
def test_error(self, data, all_arithmetic_operators):
pass
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
self._skip_if_different_combine(data)
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_array(self, data, all_arithmetic_operators):
self._skip_if_different_combine(data)
super().test_arith_series_with_array(data, all_arithmetic_operators)
class TestComparisonOps(BaseSparseTests, base.BaseComparisonOpsTests):
def _compare_other(self, s, data, op_name, other):
op = self.get_op_from_name(op_name)
# array
result = pd.Series(op(data, other))
# hard to test the fill value, since we don't know what expected
# is in general.
# Rely on tests in `tests/sparse` to validate that.
assert isinstance(result.dtype, SparseDtype)
assert result.dtype.subtype == np.dtype("bool")
with np.errstate(all="ignore"):
expected = pd.Series(
SparseArray(
op(np.asarray(data), np.asarray(other)),
fill_value=result.values.fill_value,
)
)
tm.assert_series_equal(result, expected)
# series
s = pd.Series(data)
result = op(s, other)
tm.assert_series_equal(result, expected)
class TestPrinting(BaseSparseTests, base.BasePrintingTests):
@pytest.mark.xfail(reason="Different repr", strict=True)
def test_array_repr(self, data, size):
super().test_array_repr(data, size)
class TestParsing(BaseSparseTests, base.BaseParsingTests):
@pytest.mark.parametrize("engine", ["c", "python"])
def test_EA_types(self, engine, data):
expected_msg = r".*must implement _from_sequence_of_strings.*"
with pytest.raises(NotImplementedError, match=expected_msg):
super().test_EA_types(engine, data)