craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/indexing/test_datetime.py
2021-01-30 22:29:33 +01:00

381 lines
12 KiB
Python

from datetime import date, datetime, timedelta
from dateutil import tz
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, Series, Timestamp, date_range
import pandas._testing as tm
class TestDatetimeIndex:
def test_setitem_with_datetime_tz(self):
# 16889
# support .loc with alignment and tz-aware DatetimeIndex
mask = np.array([True, False, True, False])
idx = date_range("20010101", periods=4, tz="UTC")
df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64")
result = df.copy()
result.loc[mask, :] = df.loc[mask, :]
tm.assert_frame_equal(result, df)
result = df.copy()
result.loc[mask] = df.loc[mask]
tm.assert_frame_equal(result, df)
idx = date_range("20010101", periods=4)
df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64")
result = df.copy()
result.loc[mask, :] = df.loc[mask, :]
tm.assert_frame_equal(result, df)
result = df.copy()
result.loc[mask] = df.loc[mask]
tm.assert_frame_equal(result, df)
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
df = DataFrame({"A": idx, "B": dr})
df["C"] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
# indexing
result = df.iloc[1]
expected = Series(
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
index=list("ABC"),
dtype="object",
name=1,
)
tm.assert_series_equal(result, expected)
result = df.loc[1]
expected = Series(
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
index=list("ABC"),
dtype="object",
name=1,
)
tm.assert_series_equal(result, expected)
# indexing - fast_xs
df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
result = df.iloc[5]
expected = Series(
[Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5
)
tm.assert_series_equal(result, expected)
result = df.loc[5]
tm.assert_series_equal(result, expected)
# indexing - boolean
result = df[df.a > df.a[3]]
expected = df.iloc[4:]
tm.assert_frame_equal(result, expected)
# indexing - setting an element
df = DataFrame(
data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]),
columns=["time"],
)
df["new_col"] = ["new", "old"]
df.time = df.set_index("time").index.tz_localize("UTC")
v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific")
# trying to set a single element on a part of a different timezone
# this converts to object
df2 = df.copy()
df2.loc[df2.new_col == "new", "time"] = v
expected = Series([v[0], df.loc[1, "time"]], name="time")
tm.assert_series_equal(df2.time, expected)
v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s")
df.loc[df.new_col == "new", "time"] = v
tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v)
def test_consistency_with_tz_aware_scalar(self):
# xef gh-12938
# various ways of indexing the same tz-aware scalar
df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame()
df = pd.concat([df, df]).reset_index(drop=True)
expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels")
result = df[0][0]
assert result == expected
result = df.iloc[0, 0]
assert result == expected
result = df.loc[0, 0]
assert result == expected
result = df.iat[0, 0]
assert result == expected
result = df.at[0, 0]
assert result == expected
result = df[0].loc[0]
assert result == expected
result = df[0].at[0]
assert result == expected
def test_indexing_with_datetimeindex_tz(self):
# GH 12050
# indexing on a series with a datetimeindex with tz
index = date_range("2015-01-01", periods=2, tz="utc")
ser = Series(range(2), index=index, dtype="int64")
# list-like indexing
for sel in (index, list(index)):
# getitem
result = ser[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# setitem
result = ser.copy()
result[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
result = ser.loc[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# .loc setitem
result = ser.copy()
result.loc[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# single element indexing
# getitem
assert ser[index[1]] == 1
# setitem
result = ser.copy()
result[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
assert ser.loc[index[1]] == 1
# .loc setitem
result = ser.copy()
result.loc[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
def test_partial_setting_with_datetimelike_dtype(self):
# GH9478
# a datetimeindex alignment issue with partial setting
df = DataFrame(
np.arange(6.0).reshape(3, 2),
columns=list("AB"),
index=date_range("1/1/2000", periods=3, freq="1H"),
)
expected = df.copy()
expected["C"] = [expected.index[0]] + [pd.NaT, pd.NaT]
mask = df.A < 1
df.loc[mask, "C"] = df.loc[mask].index
tm.assert_frame_equal(df, expected)
def test_loc_setitem_datetime(self):
# GH 9516
dt1 = Timestamp("20130101 09:00:00")
dt2 = Timestamp("20130101 10:00:00")
for conv in [
lambda x: x,
lambda x: x.to_datetime64(),
lambda x: x.to_pydatetime(),
lambda x: np.datetime64(x),
]:
df = DataFrame()
df.loc[conv(dt1), "one"] = 100
df.loc[conv(dt2), "one"] = 200
expected = DataFrame({"one": [100.0, 200.0]}, index=[dt1, dt2])
tm.assert_frame_equal(df, expected)
def test_series_partial_set_datetime(self):
# GH 11497
idx = date_range("2011-01-01", "2011-01-02", freq="D", name="idx")
ser = Series([0.1, 0.2], index=idx, name="s")
result = ser.loc[[Timestamp("2011-01-01"), Timestamp("2011-01-02")]]
exp = Series([0.1, 0.2], index=idx, name="s")
exp.index = exp.index._with_freq(None)
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [
Timestamp("2011-01-02"),
Timestamp("2011-01-02"),
Timestamp("2011-01-01"),
]
exp = Series(
[0.2, 0.2, 0.1], index=pd.DatetimeIndex(keys, name="idx"), name="s"
)
tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)
keys = [
Timestamp("2011-01-03"),
Timestamp("2011-01-02"),
Timestamp("2011-01-03"),
]
with pytest.raises(KeyError, match="with any missing labels"):
ser.loc[keys]
def test_series_partial_set_period(self):
# GH 11497
idx = pd.period_range("2011-01-01", "2011-01-02", freq="D", name="idx")
ser = Series([0.1, 0.2], index=idx, name="s")
result = ser.loc[
[pd.Period("2011-01-01", freq="D"), pd.Period("2011-01-02", freq="D")]
]
exp = Series([0.1, 0.2], index=idx, name="s")
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [
pd.Period("2011-01-02", freq="D"),
pd.Period("2011-01-02", freq="D"),
pd.Period("2011-01-01", freq="D"),
]
exp = Series([0.2, 0.2, 0.1], index=pd.PeriodIndex(keys, name="idx"), name="s")
tm.assert_series_equal(ser.loc[keys], exp, check_index_type=True)
keys = [
pd.Period("2011-01-03", freq="D"),
pd.Period("2011-01-02", freq="D"),
pd.Period("2011-01-03", freq="D"),
]
with pytest.raises(KeyError, match="with any missing labels"):
ser.loc[keys]
def test_nanosecond_getitem_setitem_with_tz(self):
# GH 11679
data = ["2016-06-28 08:30:00.123456789"]
index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]")
df = DataFrame({"a": [10]}, index=index)
result = df.loc[df.index[0]]
expected = Series(10, index=["a"], name=df.index[0])
tm.assert_series_equal(result, expected)
result = df.copy()
result.loc[df.index[0], "a"] = -1
expected = DataFrame(-1, index=index, columns=["a"])
tm.assert_frame_equal(result, expected)
def test_loc_getitem_across_dst(self):
# GH 21846
idx = pd.date_range(
"2017-10-29 01:30:00", tz="Europe/Berlin", periods=5, freq="30 min"
)
series2 = pd.Series([0, 1, 2, 3, 4], index=idx)
t_1 = pd.Timestamp(
"2017-10-29 02:30:00+02:00", tz="Europe/Berlin", freq="30min"
)
t_2 = pd.Timestamp(
"2017-10-29 02:00:00+01:00", tz="Europe/Berlin", freq="30min"
)
result = series2.loc[t_1:t_2]
expected = pd.Series([2, 3], index=idx[2:4])
tm.assert_series_equal(result, expected)
result = series2[t_1]
expected = 2
assert result == expected
def test_loc_incremental_setitem_with_dst(self):
# GH 20724
base = datetime(2015, 11, 1, tzinfo=tz.gettz("US/Pacific"))
idxs = [base + timedelta(seconds=i * 900) for i in range(16)]
result = pd.Series([0], index=[idxs[0]])
for ts in idxs:
result.loc[ts] = 1
expected = pd.Series(1, index=idxs)
tm.assert_series_equal(result, expected)
def test_loc_setitem_with_existing_dst(self):
# GH 18308
start = pd.Timestamp("2017-10-29 00:00:00+0200", tz="Europe/Madrid")
end = pd.Timestamp("2017-10-29 03:00:00+0100", tz="Europe/Madrid")
ts = pd.Timestamp("2016-10-10 03:00:00", tz="Europe/Madrid")
idx = pd.date_range(start, end, closed="left", freq="H")
result = pd.DataFrame(index=idx, columns=["value"])
result.loc[ts, "value"] = 12
expected = pd.DataFrame(
[np.nan] * len(idx) + [12],
index=idx.append(pd.DatetimeIndex([ts])),
columns=["value"],
dtype=object,
)
tm.assert_frame_equal(result, expected)
def test_loc_str_slicing(self):
ix = pd.period_range(start="2017-01-01", end="2018-01-01", freq="M")
ser = ix.to_series()
result = ser.loc[:"2017-12"]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)
def test_loc_label_slicing(self):
ix = pd.period_range(start="2017-01-01", end="2018-01-01", freq="M")
ser = ix.to_series()
result = ser.loc[: ix[-2]]
expected = ser.iloc[:-1]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"slice_, positions",
[
[slice(date(2018, 1, 1), None), [0, 1, 2]],
[slice(date(2019, 1, 2), None), [2]],
[slice(date(2020, 1, 1), None), []],
[slice(None, date(2020, 1, 1)), [0, 1, 2]],
[slice(None, date(2019, 1, 1)), [0]],
],
)
def test_getitem_slice_date(self, slice_, positions):
# https://github.com/pandas-dev/pandas/issues/31501
s = pd.Series(
[0, 1, 2],
pd.DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]),
)
result = s[slice_]
expected = s.take(positions)
tm.assert_series_equal(result, expected)