craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/io/pickle.py
2021-01-30 22:29:33 +01:00

199 lines
6.4 KiB
Python

""" pickle compat """
import pickle
from typing import Any, Optional
import warnings
from pandas._typing import FilePathOrBuffer
from pandas.compat import pickle_compat as pc
from pandas.io.common import get_filepath_or_buffer, get_handle
def to_pickle(
obj: Any,
filepath_or_buffer: FilePathOrBuffer,
compression: Optional[str] = "infer",
protocol: int = pickle.HIGHEST_PROTOCOL,
):
"""
Pickle (serialize) object to file.
Parameters
----------
obj : any object
Any python object.
filepath_or_buffer : str, path object or file-like object
File path, URL, or buffer where the pickled object will be stored.
.. versionchanged:: 1.0.0
Accept URL. URL has to be of S3 or GCS.
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
If 'infer' and 'path_or_url' is path-like, then detect compression from
the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
compression) If 'infer' and 'path_or_url' is not path-like, then use
None (= no decompression).
protocol : int
Int which indicates which protocol should be used by the pickler,
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
values for this parameter depend on the version of Python. For Python
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
For Python >= 3.4, 4 is a valid value. A negative value for the
protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.
.. [1] https://docs.python.org/3/library/pickle.html
See Also
--------
read_pickle : Load pickled pandas object (or any object) from file.
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_sql : Write DataFrame to a SQL database.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
Examples
--------
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl")
>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> import os
>>> os.remove("./dummy.pkl")
"""
fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
filepath_or_buffer, compression=compression, mode="wb"
)
if not isinstance(fp_or_buf, str) and compression == "infer":
compression = None
f, fh = get_handle(fp_or_buf, "wb", compression=compression, is_text=False)
if protocol < 0:
protocol = pickle.HIGHEST_PROTOCOL
try:
f.write(pickle.dumps(obj, protocol=protocol))
finally:
f.close()
for _f in fh:
_f.close()
if should_close:
try:
fp_or_buf.close()
except ValueError:
pass
def read_pickle(
filepath_or_buffer: FilePathOrBuffer, compression: Optional[str] = "infer"
):
"""
Load pickled pandas object (or any object) from file.
.. warning::
Loading pickled data received from untrusted sources can be
unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
File path, URL, or buffer where the pickled object will be loaded from.
.. versionchanged:: 1.0.0
Accept URL. URL is not limited to S3 and GCS.
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
If 'infer' and 'path_or_url' is path-like, then detect compression from
the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
compression) If 'infer' and 'path_or_url' is not path-like, then use
None (= no decompression).
Returns
-------
unpickled : same type as object stored in file
See Also
--------
DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
Series.to_pickle : Pickle (serialize) Series object to file.
read_hdf : Read HDF5 file into a DataFrame.
read_sql : Read SQL query or database table into a DataFrame.
read_parquet : Load a parquet object, returning a DataFrame.
Notes
-----
read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3.
Examples
--------
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
>>> original_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl")
>>> unpickled_df = pd.read_pickle("./dummy.pkl")
>>> unpickled_df
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> import os
>>> os.remove("./dummy.pkl")
"""
fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
filepath_or_buffer, compression=compression
)
if not isinstance(fp_or_buf, str) and compression == "infer":
compression = None
f, fh = get_handle(fp_or_buf, "rb", compression=compression, is_text=False)
# 1) try standard library Pickle
# 2) try pickle_compat (older pandas version) to handle subclass changes
# 3) try pickle_compat with latin-1 encoding upon a UnicodeDecodeError
try:
excs_to_catch = (AttributeError, ImportError, ModuleNotFoundError, TypeError)
# TypeError for Cython complaints about object.__new__ vs Tick.__new__
try:
with warnings.catch_warnings(record=True):
# We want to silence any warnings about, e.g. moved modules.
warnings.simplefilter("ignore", Warning)
return pickle.load(f)
except excs_to_catch:
# e.g.
# "No module named 'pandas.core.sparse.series'"
# "Can't get attribute '__nat_unpickle' on <module 'pandas._libs.tslib"
return pc.load(f, encoding=None)
except UnicodeDecodeError:
# e.g. can occur for files written in py27; see GH#28645 and GH#31988
return pc.load(f, encoding="latin-1")
finally:
f.close()
for _f in fh:
_f.close()
if should_close:
try:
fp_or_buf.close()
except ValueError:
pass