craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/indexes/test_setops.py
2021-01-30 22:29:33 +01:00

107 lines
3.5 KiB
Python

"""
The tests in this package are to ensure the proper resultant dtypes of
set operations.
"""
import numpy as np
import pytest
from pandas.core.dtypes.common import is_dtype_equal
import pandas as pd
from pandas import Float64Index, Int64Index, RangeIndex, UInt64Index
import pandas._testing as tm
from pandas.api.types import pandas_dtype
COMPATIBLE_INCONSISTENT_PAIRS = {
(Int64Index, RangeIndex): (tm.makeIntIndex, tm.makeRangeIndex),
(Float64Index, Int64Index): (tm.makeFloatIndex, tm.makeIntIndex),
(Float64Index, RangeIndex): (tm.makeFloatIndex, tm.makeIntIndex),
(Float64Index, UInt64Index): (tm.makeFloatIndex, tm.makeUIntIndex),
}
def test_union_same_types(index):
# Union with a non-unique, non-monotonic index raises error
# Only needed for bool index factory
idx1 = index.sort_values()
idx2 = index.sort_values()
assert idx1.union(idx2).dtype == idx1.dtype
def test_union_different_types(index, index_fixture2):
# This test only considers combinations of indices
# GH 23525
idx1, idx2 = index, index_fixture2
type_pair = tuple(sorted([type(idx1), type(idx2)], key=lambda x: str(x)))
if type_pair in COMPATIBLE_INCONSISTENT_PAIRS:
pytest.xfail("This test only considers non compatible indexes.")
if any(isinstance(idx, pd.MultiIndex) for idx in (idx1, idx2)):
pytest.xfail("This test doesn't consider multiindixes.")
if is_dtype_equal(idx1.dtype, idx2.dtype):
pytest.xfail("This test only considers non matching dtypes.")
# A union with a CategoricalIndex (even as dtype('O')) and a
# non-CategoricalIndex can only be made if both indices are monotonic.
# This is true before this PR as well.
# Union with a non-unique, non-monotonic index raises error
# This applies to the boolean index
idx1 = idx1.sort_values()
idx2 = idx2.sort_values()
assert idx1.union(idx2).dtype == np.dtype("O")
assert idx2.union(idx1).dtype == np.dtype("O")
@pytest.mark.parametrize("idx_fact1,idx_fact2", COMPATIBLE_INCONSISTENT_PAIRS.values())
def test_compatible_inconsistent_pairs(idx_fact1, idx_fact2):
# GH 23525
idx1 = idx_fact1(10)
idx2 = idx_fact2(20)
res1 = idx1.union(idx2)
res2 = idx2.union(idx1)
assert res1.dtype in (idx1.dtype, idx2.dtype)
assert res2.dtype in (idx1.dtype, idx2.dtype)
@pytest.mark.parametrize(
"left, right, expected",
[
("int64", "int64", "int64"),
("int64", "uint64", "object"),
("int64", "float64", "float64"),
("uint64", "float64", "float64"),
("uint64", "uint64", "uint64"),
("float64", "float64", "float64"),
("datetime64[ns]", "int64", "object"),
("datetime64[ns]", "uint64", "object"),
("datetime64[ns]", "float64", "object"),
("datetime64[ns, CET]", "int64", "object"),
("datetime64[ns, CET]", "uint64", "object"),
("datetime64[ns, CET]", "float64", "object"),
("Period[D]", "int64", "object"),
("Period[D]", "uint64", "object"),
("Period[D]", "float64", "object"),
],
)
def test_union_dtypes(left, right, expected):
left = pandas_dtype(left)
right = pandas_dtype(right)
a = pd.Index([], dtype=left)
b = pd.Index([], dtype=right)
result = (a | b).dtype
assert result == expected
@pytest.mark.parametrize("values", [[1, 2, 2, 3], [3, 3]])
def test_intersection_duplicates(values):
# GH#31326
a = pd.Index(values)
b = pd.Index([3, 3])
result = a.intersection(b)
expected = pd.Index([3])
tm.assert_index_equal(result, expected)