mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-04 03:41:46 +01:00
1239 lines
31 KiB
Python
1239 lines
31 KiB
Python
"""
|
|
This file is very long and growing, but it was decided to not split it yet, as
|
|
it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989
|
|
|
|
Instead of splitting it was decided to define sections here:
|
|
- Configuration / Settings
|
|
- Autouse fixtures
|
|
- Common arguments
|
|
- Missing values & co.
|
|
- Classes
|
|
- Indices
|
|
- Series'
|
|
- DataFrames
|
|
- Operators & Operations
|
|
- Data sets/files
|
|
- Time zones
|
|
- Dtypes
|
|
- Misc
|
|
"""
|
|
|
|
from collections import abc
|
|
from datetime import date, time, timedelta, timezone
|
|
from decimal import Decimal
|
|
import operator
|
|
import os
|
|
|
|
from dateutil.tz import tzlocal, tzutc
|
|
import hypothesis
|
|
from hypothesis import strategies as st
|
|
import numpy as np
|
|
import pytest
|
|
from pytz import FixedOffset, utc
|
|
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame
|
|
import pandas._testing as tm
|
|
from pandas.core import ops
|
|
from pandas.core.indexes.api import Index, MultiIndex
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Configuration / Settings
|
|
# ----------------------------------------------------------------
|
|
# pytest
|
|
def pytest_configure(config):
|
|
# Register marks to avoid warnings in pandas.test()
|
|
# sync with setup.cfg
|
|
config.addinivalue_line("markers", "single: mark a test as single cpu only")
|
|
config.addinivalue_line("markers", "slow: mark a test as slow")
|
|
config.addinivalue_line("markers", "network: mark a test as network")
|
|
config.addinivalue_line(
|
|
"markers", "db: tests requiring a database (mysql or postgres)"
|
|
)
|
|
config.addinivalue_line("markers", "high_memory: mark a test as a high-memory only")
|
|
config.addinivalue_line("markers", "clipboard: mark a pd.read_clipboard test")
|
|
|
|
|
|
def pytest_addoption(parser):
|
|
parser.addoption("--skip-slow", action="store_true", help="skip slow tests")
|
|
parser.addoption("--skip-network", action="store_true", help="skip network tests")
|
|
parser.addoption("--skip-db", action="store_true", help="skip db tests")
|
|
parser.addoption(
|
|
"--run-high-memory", action="store_true", help="run high memory tests"
|
|
)
|
|
parser.addoption("--only-slow", action="store_true", help="run only slow tests")
|
|
parser.addoption(
|
|
"--strict-data-files",
|
|
action="store_true",
|
|
help="Fail if a test is skipped for missing data file.",
|
|
)
|
|
|
|
|
|
def pytest_runtest_setup(item):
|
|
if "slow" in item.keywords and item.config.getoption("--skip-slow"):
|
|
pytest.skip("skipping due to --skip-slow")
|
|
|
|
if "slow" not in item.keywords and item.config.getoption("--only-slow"):
|
|
pytest.skip("skipping due to --only-slow")
|
|
|
|
if "network" in item.keywords and item.config.getoption("--skip-network"):
|
|
pytest.skip("skipping due to --skip-network")
|
|
|
|
if "db" in item.keywords and item.config.getoption("--skip-db"):
|
|
pytest.skip("skipping due to --skip-db")
|
|
|
|
if "high_memory" in item.keywords and not item.config.getoption(
|
|
"--run-high-memory"
|
|
):
|
|
pytest.skip("skipping high memory test since --run-high-memory was not set")
|
|
|
|
|
|
# Hypothesis
|
|
hypothesis.settings.register_profile(
|
|
"ci",
|
|
# Hypothesis timing checks are tuned for scalars by default, so we bump
|
|
# them from 200ms to 500ms per test case as the global default. If this
|
|
# is too short for a specific test, (a) try to make it faster, and (b)
|
|
# if it really is slow add `@settings(deadline=...)` with a working value,
|
|
# or `deadline=None` to entirely disable timeouts for that test.
|
|
deadline=500,
|
|
suppress_health_check=(hypothesis.HealthCheck.too_slow,),
|
|
)
|
|
hypothesis.settings.load_profile("ci")
|
|
|
|
# Registering these strategies makes them globally available via st.from_type,
|
|
# which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
|
|
for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
|
|
)
|
|
|
|
for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls,
|
|
st.builds(
|
|
cls,
|
|
n=st.integers(-5, 5),
|
|
normalize=st.booleans(),
|
|
month=st.integers(min_value=1, max_value=12),
|
|
),
|
|
)
|
|
|
|
for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
|
|
cls = getattr(pd.tseries.offsets, name)
|
|
st.register_type_strategy(
|
|
cls,
|
|
st.builds(
|
|
cls,
|
|
n=st.integers(-24, 24),
|
|
normalize=st.booleans(),
|
|
startingMonth=st.integers(min_value=1, max_value=12),
|
|
),
|
|
)
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Autouse fixtures
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(autouse=True)
|
|
def configure_tests():
|
|
"""
|
|
Configure settings for all tests and test modules.
|
|
"""
|
|
pd.set_option("chained_assignment", "raise")
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def add_imports(doctest_namespace):
|
|
"""
|
|
Make `np` and `pd` names available for doctests.
|
|
"""
|
|
doctest_namespace["np"] = np
|
|
doctest_namespace["pd"] = pd
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Common arguments
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis {repr(x)}")
|
|
def axis(request):
|
|
"""
|
|
Fixture for returning the axis numbers of a DataFrame.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
axis_frame = axis
|
|
|
|
|
|
@pytest.fixture(params=[0, "index"], ids=lambda x: f"axis {repr(x)}")
|
|
def axis_series(request):
|
|
"""
|
|
Fixture for returning the axis numbers of a Series.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False, None])
|
|
def observed(request):
|
|
"""
|
|
Pass in the observed keyword to groupby for [True, False]
|
|
This indicates whether categoricals should return values for
|
|
values which are not in the grouper [False / None], or only values which
|
|
appear in the grouper [True]. [None] is supported for future compatibility
|
|
if we decide to change the default (and would need to warn if this
|
|
parameter is not passed).
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False, None])
|
|
def ordered(request):
|
|
"""
|
|
Boolean 'ordered' parameter for Categorical.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["first", "last", False])
|
|
def keep(request):
|
|
"""
|
|
Valid values for the 'keep' parameter used in
|
|
.duplicated or .drop_duplicates
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"])
|
|
def closed(request):
|
|
"""
|
|
Fixture for trying all interval closed parameters.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["left", "right", "both", "neither"])
|
|
def other_closed(request):
|
|
"""
|
|
Secondary closed fixture to allow parametrizing over all pairs of closed.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[None, "gzip", "bz2", "zip", "xz"])
|
|
def compression(request):
|
|
"""
|
|
Fixture for trying common compression types in compression tests.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["gzip", "bz2", "zip", "xz"])
|
|
def compression_only(request):
|
|
"""
|
|
Fixture for trying common compression types in compression tests excluding
|
|
uncompressed case.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def writable(request):
|
|
"""
|
|
Fixture that an array is writable.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["inner", "outer", "left", "right"])
|
|
def join_type(request):
|
|
"""
|
|
Fixture for trying all types of join operations.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["nlargest", "nsmallest"])
|
|
def nselect_method(request):
|
|
"""
|
|
Fixture for trying all nselect methods.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Missing values & co.
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=[None, np.nan, pd.NaT, float("nan"), pd.NA], ids=str)
|
|
def nulls_fixture(request):
|
|
"""
|
|
Fixture for each null type in pandas.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
|
|
|
|
|
|
@pytest.fixture(params=[None, np.nan, pd.NaT])
|
|
def unique_nulls_fixture(request):
|
|
"""
|
|
Fixture for each null type in pandas, each null type exactly once.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of unique_nulls_fixture:
|
|
unique_nulls_fixture2 = unique_nulls_fixture
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Classes
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=[pd.Index, pd.Series], ids=["index", "series"])
|
|
def index_or_series(request):
|
|
"""
|
|
Fixture to parametrize over Index and Series, made necessary by a mypy
|
|
bug, giving an error:
|
|
|
|
List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
|
|
|
|
See GH#29725
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of index_or_series fixture:
|
|
index_or_series2 = index_or_series
|
|
|
|
|
|
@pytest.fixture
|
|
def dict_subclass():
|
|
"""
|
|
Fixture for a dictionary subclass.
|
|
"""
|
|
|
|
class TestSubDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
dict.__init__(self, *args, **kwargs)
|
|
|
|
return TestSubDict
|
|
|
|
|
|
@pytest.fixture
|
|
def non_dict_mapping_subclass():
|
|
"""
|
|
Fixture for a non-mapping dictionary subclass.
|
|
"""
|
|
|
|
class TestNonDictMapping(abc.Mapping):
|
|
def __init__(self, underlying_dict):
|
|
self._data = underlying_dict
|
|
|
|
def __getitem__(self, key):
|
|
return self._data.__getitem__(key)
|
|
|
|
def __iter__(self):
|
|
return self._data.__iter__()
|
|
|
|
def __len__(self):
|
|
return self._data.__len__()
|
|
|
|
return TestNonDictMapping
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Indices
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def multiindex_year_month_day_dataframe_random_data():
|
|
"""
|
|
DataFrame with 3 level MultiIndex (year, month, day) covering
|
|
first 100 business days from 2000-01-01 with random data
|
|
"""
|
|
tdf = tm.makeTimeDataFrame(100)
|
|
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
|
|
# use Int64Index, to make sure things work
|
|
ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels], inplace=True)
|
|
ymd.index.set_names(["year", "month", "day"], inplace=True)
|
|
return ymd
|
|
|
|
|
|
def _create_multiindex():
|
|
"""
|
|
MultiIndex used to test the general functionality of this object
|
|
"""
|
|
|
|
# See Also: tests.multi.conftest.idx
|
|
major_axis = Index(["foo", "bar", "baz", "qux"])
|
|
minor_axis = Index(["one", "two"])
|
|
|
|
major_codes = np.array([0, 0, 1, 2, 3, 3])
|
|
minor_codes = np.array([0, 1, 0, 1, 0, 1])
|
|
index_names = ["first", "second"]
|
|
mi = MultiIndex(
|
|
levels=[major_axis, minor_axis],
|
|
codes=[major_codes, minor_codes],
|
|
names=index_names,
|
|
verify_integrity=False,
|
|
)
|
|
return mi
|
|
|
|
|
|
def _create_mi_with_dt64tz_level():
|
|
"""
|
|
MultiIndex with a level that is a tzaware DatetimeIndex.
|
|
"""
|
|
# GH#8367 round trip with pickle
|
|
return MultiIndex.from_product(
|
|
[[1, 2], ["a", "b"], pd.date_range("20130101", periods=3, tz="US/Eastern")],
|
|
names=["one", "two", "three"],
|
|
)
|
|
|
|
|
|
indices_dict = {
|
|
"unicode": tm.makeUnicodeIndex(100),
|
|
"string": tm.makeStringIndex(100),
|
|
"datetime": tm.makeDateIndex(100),
|
|
"datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"),
|
|
"period": tm.makePeriodIndex(100),
|
|
"timedelta": tm.makeTimedeltaIndex(100),
|
|
"int": tm.makeIntIndex(100),
|
|
"uint": tm.makeUIntIndex(100),
|
|
"range": tm.makeRangeIndex(100),
|
|
"float": tm.makeFloatIndex(100),
|
|
"bool": tm.makeBoolIndex(10),
|
|
"categorical": tm.makeCategoricalIndex(100),
|
|
"interval": tm.makeIntervalIndex(100),
|
|
"empty": Index([]),
|
|
"tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
|
|
"mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
|
|
"multi": _create_multiindex(),
|
|
"repeats": Index([0, 0, 1, 1, 2, 2]),
|
|
}
|
|
|
|
|
|
@pytest.fixture(params=indices_dict.keys())
|
|
def index(request):
|
|
"""
|
|
Fixture for many "simple" kinds of indices.
|
|
|
|
These indices are unlikely to cover corner cases, e.g.
|
|
- no names
|
|
- no NaTs/NaNs
|
|
- no values near implementation bounds
|
|
- ...
|
|
"""
|
|
# copy to avoid mutation, e.g. setting .name
|
|
return indices_dict[request.param].copy()
|
|
|
|
|
|
# Needed to generate cartesian product of indices
|
|
index_fixture2 = index
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Series'
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def empty_series():
|
|
return pd.Series([], index=[], dtype=np.float64)
|
|
|
|
|
|
@pytest.fixture
|
|
def string_series():
|
|
"""
|
|
Fixture for Series of floats with Index of unique strings
|
|
"""
|
|
s = tm.makeStringSeries()
|
|
s.name = "series"
|
|
return s
|
|
|
|
|
|
@pytest.fixture
|
|
def object_series():
|
|
"""
|
|
Fixture for Series of dtype object with Index of unique strings
|
|
"""
|
|
s = tm.makeObjectSeries()
|
|
s.name = "objects"
|
|
return s
|
|
|
|
|
|
@pytest.fixture
|
|
def datetime_series():
|
|
"""
|
|
Fixture for Series of floats with DatetimeIndex
|
|
"""
|
|
s = tm.makeTimeSeries()
|
|
s.name = "ts"
|
|
return s
|
|
|
|
|
|
def _create_series(index):
|
|
""" Helper for the _series dict """
|
|
size = len(index)
|
|
data = np.random.randn(size)
|
|
return pd.Series(data, index=index, name="a")
|
|
|
|
|
|
_series = {
|
|
f"series-with-{index_id}-index": _create_series(index)
|
|
for index_id, index in indices_dict.items()
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def series_with_simple_index(index):
|
|
"""
|
|
Fixture for tests on series with changing types of indices.
|
|
"""
|
|
return _create_series(index)
|
|
|
|
|
|
_narrow_dtypes = [
|
|
np.float16,
|
|
np.float32,
|
|
np.int8,
|
|
np.int16,
|
|
np.int32,
|
|
np.uint8,
|
|
np.uint16,
|
|
np.uint32,
|
|
]
|
|
_narrow_series = {
|
|
f"{dtype.__name__}-series": tm.makeFloatSeries(name="a").astype(dtype)
|
|
for dtype in _narrow_dtypes
|
|
}
|
|
|
|
|
|
@pytest.fixture(params=_narrow_series.keys())
|
|
def narrow_series(request):
|
|
"""
|
|
Fixture for Series with low precision data types
|
|
"""
|
|
# copy to avoid mutation, e.g. setting .name
|
|
return _narrow_series[request.param].copy()
|
|
|
|
|
|
_index_or_series_objs = {**indices_dict, **_series, **_narrow_series}
|
|
|
|
|
|
@pytest.fixture(params=_index_or_series_objs.keys())
|
|
def index_or_series_obj(request):
|
|
"""
|
|
Fixture for tests on indexes, series and series with a narrow dtype
|
|
copy to avoid mutation, e.g. setting .name
|
|
"""
|
|
return _index_or_series_objs[request.param].copy(deep=True)
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# DataFrames
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def empty_frame():
|
|
return DataFrame()
|
|
|
|
|
|
@pytest.fixture
|
|
def int_frame():
|
|
"""
|
|
Fixture for DataFrame of ints with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D']
|
|
|
|
A B C D
|
|
vpBeWjM651 1 0 1 0
|
|
5JyxmrP1En -1 0 0 0
|
|
qEDaoD49U2 -1 1 0 0
|
|
m66TkTfsFe 0 0 0 0
|
|
EHPaNzEUFm -1 0 -1 0
|
|
fpRJCevQhi 2 0 0 0
|
|
OlQvnmfi3Q 0 0 -2 0
|
|
... .. .. .. ..
|
|
uB1FPlz4uP 0 0 0 1
|
|
EcSe6yNzCU 0 0 -1 0
|
|
L50VudaiI8 -1 1 -2 0
|
|
y3bpw4nwIp 0 -1 0 0
|
|
H0RdLLwrCT 1 1 0 0
|
|
rY82K0vMwm 0 0 0 0
|
|
1OPIUjnkjk 2 0 0 0
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getSeriesData()).astype("int64")
|
|
|
|
|
|
@pytest.fixture
|
|
def datetime_frame():
|
|
"""
|
|
Fixture for DataFrame of floats with DatetimeIndex
|
|
|
|
Columns are ['A', 'B', 'C', 'D']
|
|
|
|
A B C D
|
|
2000-01-03 -1.122153 0.468535 0.122226 1.693711
|
|
2000-01-04 0.189378 0.486100 0.007864 -1.216052
|
|
2000-01-05 0.041401 -0.835752 -0.035279 -0.414357
|
|
2000-01-06 0.430050 0.894352 0.090719 0.036939
|
|
2000-01-07 -0.620982 -0.668211 -0.706153 1.466335
|
|
2000-01-10 -0.752633 0.328434 -0.815325 0.699674
|
|
2000-01-11 -2.236969 0.615737 -0.829076 -1.196106
|
|
... ... ... ... ...
|
|
2000-02-03 1.642618 -0.579288 0.046005 1.385249
|
|
2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351
|
|
2000-02-07 -2.656149 -0.601387 1.410148 0.444150
|
|
2000-02-08 -1.201881 -1.289040 0.772992 -1.445300
|
|
2000-02-09 1.377373 0.398619 1.008453 -0.928207
|
|
2000-02-10 0.473194 -0.636677 0.984058 0.511519
|
|
2000-02-11 -0.965556 0.408313 -1.312844 -0.381948
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getTimeSeriesData())
|
|
|
|
|
|
@pytest.fixture
|
|
def float_frame():
|
|
"""
|
|
Fixture for DataFrame of floats with index of unique strings
|
|
|
|
Columns are ['A', 'B', 'C', 'D'].
|
|
|
|
A B C D
|
|
P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465
|
|
qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901
|
|
tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433
|
|
wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651
|
|
M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938
|
|
QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053
|
|
r78Jwns6dn -0.653707 0.883127 0.682199 0.206159
|
|
... ... ... ... ...
|
|
IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316
|
|
lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999
|
|
qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121
|
|
yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962
|
|
65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987
|
|
eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871
|
|
xSucinXxuV -1.263557 0.252799 -0.552247 0.400426
|
|
|
|
[30 rows x 4 columns]
|
|
"""
|
|
return DataFrame(tm.getSeriesData())
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Operators & Operations
|
|
# ----------------------------------------------------------------
|
|
_all_arithmetic_operators = [
|
|
"__add__",
|
|
"__radd__",
|
|
"__sub__",
|
|
"__rsub__",
|
|
"__mul__",
|
|
"__rmul__",
|
|
"__floordiv__",
|
|
"__rfloordiv__",
|
|
"__truediv__",
|
|
"__rtruediv__",
|
|
"__pow__",
|
|
"__rpow__",
|
|
"__mod__",
|
|
"__rmod__",
|
|
]
|
|
|
|
|
|
@pytest.fixture(params=_all_arithmetic_operators)
|
|
def all_arithmetic_operators(request):
|
|
"""
|
|
Fixture for dunder names for common arithmetic operations.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
operator.add,
|
|
ops.radd,
|
|
operator.sub,
|
|
ops.rsub,
|
|
operator.mul,
|
|
ops.rmul,
|
|
operator.truediv,
|
|
ops.rtruediv,
|
|
operator.floordiv,
|
|
ops.rfloordiv,
|
|
operator.mod,
|
|
ops.rmod,
|
|
operator.pow,
|
|
ops.rpow,
|
|
]
|
|
)
|
|
def all_arithmetic_functions(request):
|
|
"""
|
|
Fixture for operator and roperator arithmetic functions.
|
|
|
|
Notes
|
|
-----
|
|
This includes divmod and rdivmod, whereas all_arithmetic_operators
|
|
does not.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_numeric_reductions = [
|
|
"sum",
|
|
"max",
|
|
"min",
|
|
"mean",
|
|
"prod",
|
|
"std",
|
|
"var",
|
|
"median",
|
|
"kurt",
|
|
"skew",
|
|
]
|
|
|
|
|
|
@pytest.fixture(params=_all_numeric_reductions)
|
|
def all_numeric_reductions(request):
|
|
"""
|
|
Fixture for numeric reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_boolean_reductions = ["all", "any"]
|
|
|
|
|
|
@pytest.fixture(params=_all_boolean_reductions)
|
|
def all_boolean_reductions(request):
|
|
"""
|
|
Fixture for boolean reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_all_reductions = _all_numeric_reductions + _all_boolean_reductions
|
|
|
|
|
|
@pytest.fixture(params=_all_reductions)
|
|
def all_reductions(request):
|
|
"""
|
|
Fixture for all (boolean + numeric) reduction names.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"])
|
|
def all_compare_operators(request):
|
|
"""
|
|
Fixture for dunder names for common compare operations
|
|
|
|
* >=
|
|
* >
|
|
* ==
|
|
* !=
|
|
* <
|
|
* <=
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
|
|
def compare_operators_no_eq_ne(request):
|
|
"""
|
|
Fixture for dunder names for compare operations except == and !=
|
|
|
|
* >=
|
|
* >
|
|
* <
|
|
* <=
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
|
|
)
|
|
def all_logical_operators(request):
|
|
"""
|
|
Fixture for dunder names for common logical operations
|
|
|
|
* |
|
|
* &
|
|
* ^
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Data sets/files
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def strict_data_files(pytestconfig):
|
|
"""
|
|
Returns the configuration for the test setting `--strict-data-files`.
|
|
"""
|
|
return pytestconfig.getoption("--strict-data-files")
|
|
|
|
|
|
@pytest.fixture
|
|
def datapath(strict_data_files):
|
|
"""
|
|
Get the path to a data file.
|
|
|
|
Parameters
|
|
----------
|
|
path : str
|
|
Path to the file, relative to ``pandas/tests/``
|
|
|
|
Returns
|
|
-------
|
|
path including ``pandas/tests``.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If the path doesn't exist and the --strict-data-files option is set.
|
|
"""
|
|
BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
|
|
|
|
def deco(*args):
|
|
path = os.path.join(BASE_PATH, *args)
|
|
if not os.path.exists(path):
|
|
if strict_data_files:
|
|
raise ValueError(
|
|
f"Could not find file {path} and --strict-data-files is set."
|
|
)
|
|
else:
|
|
pytest.skip(f"Could not find {path}.")
|
|
return path
|
|
|
|
return deco
|
|
|
|
|
|
@pytest.fixture
|
|
def iris(datapath):
|
|
"""
|
|
The iris dataset as a DataFrame.
|
|
"""
|
|
return pd.read_csv(datapath("io", "data", "csv", "iris.csv"))
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Time zones
|
|
# ----------------------------------------------------------------
|
|
TIMEZONES = [
|
|
None,
|
|
"UTC",
|
|
"US/Eastern",
|
|
"Asia/Tokyo",
|
|
"dateutil/US/Pacific",
|
|
"dateutil/Asia/Singapore",
|
|
tzutc(),
|
|
tzlocal(),
|
|
FixedOffset(300),
|
|
FixedOffset(0),
|
|
FixedOffset(-300),
|
|
timezone.utc,
|
|
timezone(timedelta(hours=1)),
|
|
timezone(timedelta(hours=-1), name="foo"),
|
|
]
|
|
TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
|
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS))
|
|
@pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
|
|
def tz_naive_fixture(request):
|
|
"""
|
|
Fixture for trying timezones including default (None): {0}
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
|
|
@pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
|
|
def tz_aware_fixture(request):
|
|
"""
|
|
Fixture for trying explicit timezones: {0}
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# Generate cartesian product of tz_aware_fixture:
|
|
tz_aware_fixture2 = tz_aware_fixture
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def datetime_tz_utc():
|
|
"""
|
|
Yields the UTC timezone object from the datetime module.
|
|
"""
|
|
return timezone.utc
|
|
|
|
|
|
@pytest.fixture(params=["utc", "dateutil/UTC", utc, tzutc(), timezone.utc])
|
|
def utc_fixture(request):
|
|
"""
|
|
Fixture to provide variants of UTC timezone strings and tzinfo objects.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Dtypes
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture(params=tm.STRING_DTYPES)
|
|
def string_dtype(request):
|
|
"""
|
|
Parametrized fixture for string dtypes.
|
|
|
|
* str
|
|
* 'str'
|
|
* 'U'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.BYTES_DTYPES)
|
|
def bytes_dtype(request):
|
|
"""
|
|
Parametrized fixture for bytes dtypes.
|
|
|
|
* bytes
|
|
* 'bytes'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.OBJECT_DTYPES)
|
|
def object_dtype(request):
|
|
"""
|
|
Parametrized fixture for object dtypes.
|
|
|
|
* object
|
|
* 'object'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.DATETIME64_DTYPES)
|
|
def datetime64_dtype(request):
|
|
"""
|
|
Parametrized fixture for datetime64 dtypes.
|
|
|
|
* 'datetime64[ns]'
|
|
* 'M8[ns]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.TIMEDELTA64_DTYPES)
|
|
def timedelta64_dtype(request):
|
|
"""
|
|
Parametrized fixture for timedelta64 dtypes.
|
|
|
|
* 'timedelta64[ns]'
|
|
* 'm8[ns]'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.FLOAT_DTYPES)
|
|
def float_dtype(request):
|
|
"""
|
|
Parameterized fixture for float dtypes.
|
|
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.COMPLEX_DTYPES)
|
|
def complex_dtype(request):
|
|
"""
|
|
Parameterized fixture for complex dtypes.
|
|
|
|
* complex
|
|
* 'complex64'
|
|
* 'complex128'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_INT_DTYPES)
|
|
def sint_dtype(request):
|
|
"""
|
|
Parameterized fixture for signed integer dtypes.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'int16'
|
|
* 'int32'
|
|
* 'int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.UNSIGNED_INT_DTYPES)
|
|
def uint_dtype(request):
|
|
"""
|
|
Parameterized fixture for unsigned integer dtypes.
|
|
|
|
* 'uint8'
|
|
* 'uint16'
|
|
* 'uint32'
|
|
* 'uint64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_INT_DTYPES)
|
|
def any_int_dtype(request):
|
|
"""
|
|
Parameterized fixture for any integer dtype.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_EA_INT_DTYPES)
|
|
def any_nullable_int_dtype(request):
|
|
"""
|
|
Parameterized fixture for any nullable integer dtype.
|
|
|
|
* 'UInt8'
|
|
* 'Int8'
|
|
* 'UInt16'
|
|
* 'Int16'
|
|
* 'UInt32'
|
|
* 'Int32'
|
|
* 'UInt64'
|
|
* 'Int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.SIGNED_EA_INT_DTYPES)
|
|
def any_signed_nullable_int_dtype(request):
|
|
"""
|
|
Parameterized fixture for any signed nullable integer dtype.
|
|
|
|
* 'Int8'
|
|
* 'Int16'
|
|
* 'Int32'
|
|
* 'Int64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_REAL_DTYPES)
|
|
def any_real_dtype(request):
|
|
"""
|
|
Parameterized fixture for any (purely) real numeric dtype.
|
|
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=tm.ALL_NUMPY_DTYPES)
|
|
def any_numpy_dtype(request):
|
|
"""
|
|
Parameterized fixture for all numpy dtypes.
|
|
|
|
* bool
|
|
* 'bool'
|
|
* int
|
|
* 'int8'
|
|
* 'uint8'
|
|
* 'int16'
|
|
* 'uint16'
|
|
* 'int32'
|
|
* 'uint32'
|
|
* 'int64'
|
|
* 'uint64'
|
|
* float
|
|
* 'float32'
|
|
* 'float64'
|
|
* complex
|
|
* 'complex64'
|
|
* 'complex128'
|
|
* str
|
|
* 'str'
|
|
* 'U'
|
|
* bytes
|
|
* 'bytes'
|
|
* 'datetime64[ns]'
|
|
* 'M8[ns]'
|
|
* 'timedelta64[ns]'
|
|
* 'm8[ns]'
|
|
* object
|
|
* 'object'
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# categoricals are handled separately
|
|
_any_skipna_inferred_dtype = [
|
|
("string", ["a", np.nan, "c"]),
|
|
("string", ["a", pd.NA, "c"]),
|
|
("bytes", [b"a", np.nan, b"c"]),
|
|
("empty", [np.nan, np.nan, np.nan]),
|
|
("empty", []),
|
|
("mixed-integer", ["a", np.nan, 2]),
|
|
("mixed", ["a", np.nan, 2.0]),
|
|
("floating", [1.0, np.nan, 2.0]),
|
|
("integer", [1, np.nan, 2]),
|
|
("mixed-integer-float", [1, np.nan, 2.0]),
|
|
("decimal", [Decimal(1), np.nan, Decimal(2)]),
|
|
("boolean", [True, np.nan, False]),
|
|
("boolean", [True, pd.NA, False]),
|
|
("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
|
|
("datetime", [pd.Timestamp("20130101"), np.nan, pd.Timestamp("20180101")]),
|
|
("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
|
|
# The following two dtypes are commented out due to GH 23554
|
|
# ('complex', [1 + 1j, np.nan, 2 + 2j]),
|
|
# ('timedelta64', [np.timedelta64(1, 'D'),
|
|
# np.nan, np.timedelta64(2, 'D')]),
|
|
("timedelta", [timedelta(1), np.nan, timedelta(2)]),
|
|
("time", [time(1), np.nan, time(2)]),
|
|
("period", [pd.Period(2013), pd.NaT, pd.Period(2018)]),
|
|
("interval", [pd.Interval(0, 1), np.nan, pd.Interval(0, 2)]),
|
|
]
|
|
ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
|
|
|
|
|
|
@pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
|
|
def any_skipna_inferred_dtype(request):
|
|
"""
|
|
Fixture for all inferred dtypes from _libs.lib.infer_dtype
|
|
|
|
The covered (inferred) types are:
|
|
* 'string'
|
|
* 'empty'
|
|
* 'bytes'
|
|
* 'mixed'
|
|
* 'mixed-integer'
|
|
* 'mixed-integer-float'
|
|
* 'floating'
|
|
* 'integer'
|
|
* 'decimal'
|
|
* 'boolean'
|
|
* 'datetime64'
|
|
* 'datetime'
|
|
* 'date'
|
|
* 'timedelta'
|
|
* 'time'
|
|
* 'period'
|
|
* 'interval'
|
|
|
|
Returns
|
|
-------
|
|
inferred_dtype : str
|
|
The string for the inferred dtype from _libs.lib.infer_dtype
|
|
values : np.ndarray
|
|
An array of object dtype that will be inferred to have
|
|
`inferred_dtype`
|
|
|
|
Examples
|
|
--------
|
|
>>> import pandas._libs.lib as lib
|
|
>>>
|
|
>>> def test_something(any_skipna_inferred_dtype):
|
|
... inferred_dtype, values = any_skipna_inferred_dtype
|
|
... # will pass
|
|
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
|
|
"""
|
|
inferred_dtype, values = request.param
|
|
values = np.array(values, dtype=object) # object dtype to avoid casting
|
|
|
|
# correctness of inference tested in tests/dtypes/test_inference.py
|
|
return inferred_dtype, values
|
|
|
|
|
|
# ----------------------------------------------------------------
|
|
# Misc
|
|
# ----------------------------------------------------------------
|
|
@pytest.fixture
|
|
def ip():
|
|
"""
|
|
Get an instance of IPython.InteractiveShell.
|
|
|
|
Will raise a skip if IPython is not installed.
|
|
"""
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.interactiveshell import InteractiveShell
|
|
|
|
return InteractiveShell()
|
|
|
|
|
|
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
|
|
def spmatrix(request):
|
|
"""
|
|
Yields scipy sparse matrix classes.
|
|
"""
|
|
from scipy import sparse
|
|
|
|
return getattr(sparse, request.param + "_matrix")
|
|
|
|
|
|
@pytest.fixture(params=list(tm.cython_table))
|
|
def cython_table_items(request):
|
|
"""
|
|
Yields a tuple of a function and its corresponding name. Correspond to
|
|
the list of aggregator "Cython functions" used on selected table items.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
getattr(pd.offsets, o)
|
|
for o in pd.offsets.__all__
|
|
if issubclass(getattr(pd.offsets, o), pd.offsets.Tick)
|
|
]
|
|
)
|
|
def tick_classes(request):
|
|
"""
|
|
Fixture for Tick based datetime offsets available for a time series.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[None, lambda x: x])
|
|
def sort_by_key(request):
|
|
"""
|
|
Simple fixture for testing keys in sorting methods.
|
|
Tests None (no key) and the identity key.
|
|
"""
|
|
return request.param
|