craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/extension/test_datetime.py

225 lines
6.5 KiB
Python

import numpy as np
import pytest
from pandas.core.dtypes.dtypes import DatetimeTZDtype
import pandas as pd
from pandas.core.arrays import DatetimeArray
from pandas.tests.extension import base
@pytest.fixture(params=["US/Central"])
def dtype(request):
return DatetimeTZDtype(unit="ns", tz=request.param)
@pytest.fixture
def data(dtype):
data = DatetimeArray(pd.date_range("2000", periods=100, tz=dtype.tz), dtype=dtype)
return data
@pytest.fixture
def data_missing(dtype):
return DatetimeArray(
np.array(["NaT", "2000-01-01"], dtype="datetime64[ns]"), dtype=dtype
)
@pytest.fixture
def data_for_sorting(dtype):
a = pd.Timestamp("2000-01-01")
b = pd.Timestamp("2000-01-02")
c = pd.Timestamp("2000-01-03")
return DatetimeArray(np.array([b, c, a], dtype="datetime64[ns]"), dtype=dtype)
@pytest.fixture
def data_missing_for_sorting(dtype):
a = pd.Timestamp("2000-01-01")
b = pd.Timestamp("2000-01-02")
return DatetimeArray(np.array([b, "NaT", a], dtype="datetime64[ns]"), dtype=dtype)
@pytest.fixture
def data_for_grouping(dtype):
"""
Expected to be like [B, B, NA, NA, A, A, B, C]
Where A < B < C and NA is missing
"""
a = pd.Timestamp("2000-01-01")
b = pd.Timestamp("2000-01-02")
c = pd.Timestamp("2000-01-03")
na = "NaT"
return DatetimeArray(
np.array([b, b, na, na, a, a, b, c], dtype="datetime64[ns]"), dtype=dtype
)
@pytest.fixture
def na_cmp():
def cmp(a, b):
return a is pd.NaT and a is b
return cmp
@pytest.fixture
def na_value():
return pd.NaT
# ----------------------------------------------------------------------------
class BaseDatetimeTests:
pass
# ----------------------------------------------------------------------------
# Tests
class TestDatetimeDtype(BaseDatetimeTests, base.BaseDtypeTests):
pass
class TestConstructors(BaseDatetimeTests, base.BaseConstructorsTests):
pass
class TestGetitem(BaseDatetimeTests, base.BaseGetitemTests):
pass
class TestMethods(BaseDatetimeTests, base.BaseMethodsTests):
@pytest.mark.skip(reason="Incorrect expected")
def test_value_counts(self, all_data, dropna):
pass
def test_combine_add(self, data_repeated):
# Timestamp.__add__(Timestamp) not defined
pass
class TestInterface(BaseDatetimeTests, base.BaseInterfaceTests):
def test_array_interface(self, data):
if data.tz:
# np.asarray(DTA) is currently always tz-naive.
pytest.skip("GH-23569")
else:
super().test_array_interface(data)
class TestArithmeticOps(BaseDatetimeTests, base.BaseArithmeticOpsTests):
implements = {"__sub__", "__rsub__"}
def test_arith_frame_with_scalar(self, data, all_arithmetic_operators):
# frame & scalar
if all_arithmetic_operators in self.implements:
df = pd.DataFrame({"A": data})
self.check_opname(df, all_arithmetic_operators, data[0], exc=None)
else:
# ... but not the rest.
super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
if all_arithmetic_operators in self.implements:
s = pd.Series(data)
self.check_opname(s, all_arithmetic_operators, s.iloc[0], exc=None)
else:
# ... but not the rest.
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_add_series_with_extension_array(self, data):
# Datetime + Datetime not implemented
s = pd.Series(data)
msg = "cannot add DatetimeArray and DatetimeArray"
with pytest.raises(TypeError, match=msg):
s + data
def test_arith_series_with_array(self, data, all_arithmetic_operators):
if all_arithmetic_operators in self.implements:
s = pd.Series(data)
self.check_opname(s, all_arithmetic_operators, s.iloc[0], exc=None)
else:
# ... but not the rest.
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
def test_error(self, data, all_arithmetic_operators):
pass
def test_divmod_series_array(self):
# GH 23287
# skipping because it is not implemented
pass
class TestCasting(BaseDatetimeTests, base.BaseCastingTests):
pass
class TestComparisonOps(BaseDatetimeTests, base.BaseComparisonOpsTests):
def _compare_other(self, s, data, op_name, other):
# the base test is not appropriate for us. We raise on comparison
# with (some) integers, depending on the value.
pass
class TestMissing(BaseDatetimeTests, base.BaseMissingTests):
pass
class TestReshaping(BaseDatetimeTests, base.BaseReshapingTests):
@pytest.mark.skip(reason="We have DatetimeTZBlock")
def test_concat(self, data, in_frame):
pass
def test_concat_mixed_dtypes(self, data):
# concat(Series[datetimetz], Series[category]) uses a
# plain np.array(values) on the DatetimeArray, which
# drops the tz.
super().test_concat_mixed_dtypes(data)
@pytest.mark.parametrize("obj", ["series", "frame"])
def test_unstack(self, obj):
# GH-13287: can't use base test, since building the expected fails.
dtype = DatetimeTZDtype(tz="US/Central")
data = DatetimeArray._from_sequence(
["2000", "2001", "2002", "2003"],
dtype=dtype,
)
index = pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"])
if obj == "series":
ser = pd.Series(data, index=index)
expected = pd.DataFrame(
{"A": data.take([0, 1]), "B": data.take([2, 3])},
index=pd.Index(["a", "b"], name="b"),
)
expected.columns.name = "a"
else:
ser = pd.DataFrame({"A": data, "B": data}, index=index)
expected = pd.DataFrame(
{
("A", "A"): data.take([0, 1]),
("A", "B"): data.take([2, 3]),
("B", "A"): data.take([0, 1]),
("B", "B"): data.take([2, 3]),
},
index=pd.Index(["a", "b"], name="b"),
)
expected.columns.names = [None, "a"]
result = ser.unstack(0)
self.assert_equal(result, expected)
class TestSetitem(BaseDatetimeTests, base.BaseSetitemTests):
pass
class TestGroupby(BaseDatetimeTests, base.BaseGroupbyTests):
pass
class TestPrinting(BaseDatetimeTests, base.BasePrintingTests):
pass