esphome/esphome/components/sm10bit_base/sm10bit_base.cpp

113 lines
4 KiB
C++
Raw Normal View History

#include "sm10bit_base.h"
#include "esphome/core/log.h"
namespace esphome {
namespace sm10bit_base {
static const char *const TAG = "sm10bit_base";
static const uint8_t SM10BIT_ADDR_STANDBY = 0x0;
static const uint8_t SM10BIT_ADDR_START_3CH = 0x8;
static const uint8_t SM10BIT_ADDR_START_2CH = 0x10;
static const uint8_t SM10BIT_ADDR_START_5CH = 0x18;
// Power current values
// HEX | Binary | RGB level | White level | Config value
// 0x0 | 0000 | RGB 10mA | CW 5mA | 0
// 0x1 | 0001 | RGB 20mA | CW 10mA | 1
// 0x2 | 0010 | RGB 30mA | CW 15mA | 2 - Default spec color value
// 0x3 | 0011 | RGB 40mA | CW 20mA | 3
// 0x4 | 0100 | RGB 50mA | CW 25mA | 4 - Default spec white value
// 0x5 | 0101 | RGB 60mA | CW 30mA | 5
// 0x6 | 0110 | RGB 70mA | CW 35mA | 6
// 0x7 | 0111 | RGB 80mA | CW 40mA | 7
// 0x8 | 1000 | RGB 90mA | CW 45mA | 8
// 0x9 | 1001 | RGB 100mA | CW 50mA | 9
// 0xA | 1010 | RGB 110mA | CW 55mA | 10
// 0xB | 1011 | RGB 120mA | CW 60mA | 11
// 0xC | 1100 | RGB 130mA | CW 65mA | 12
// 0xD | 1101 | RGB 140mA | CW 70mA | 13
// 0xE | 1110 | RGB 150mA | CW 75mA | 14
// 0xF | 1111 | RGB 160mA | CW 80mA | 15
void Sm10BitBase::loop() {
if (!this->update_)
return;
uint8_t data[12];
if (this->pwm_amounts_[0] == 0 && this->pwm_amounts_[1] == 0 && this->pwm_amounts_[2] == 0 &&
this->pwm_amounts_[3] == 0 && this->pwm_amounts_[4] == 0) {
// Off / Sleep
data[0] = this->model_id_ + SM10BIT_ADDR_STANDBY;
for (int i = 1; i < 12; i++)
data[i] = 0;
this->write_buffer_(data, 12);
} else if (this->pwm_amounts_[0] == 0 && this->pwm_amounts_[1] == 0 && this->pwm_amounts_[2] == 0 &&
(this->pwm_amounts_[3] > 0 || this->pwm_amounts_[4] > 0)) {
// Only data on white channels
data[0] = this->model_id_ + SM10BIT_ADDR_START_2CH;
data[1] = 0 << 4 | this->max_power_white_channels_;
for (int i = 2, j = 0; i < 12; i += 2, j++) {
data[i] = this->pwm_amounts_[j] >> 0x8;
data[i + 1] = this->pwm_amounts_[j] & 0xFF;
}
this->write_buffer_(data, 12);
} else if ((this->pwm_amounts_[0] > 0 || this->pwm_amounts_[1] > 0 || this->pwm_amounts_[2] > 0) &&
this->pwm_amounts_[3] == 0 && this->pwm_amounts_[4] == 0) {
// Only data on RGB channels
data[0] = this->model_id_ + SM10BIT_ADDR_START_3CH;
data[1] = this->max_power_color_channels_ << 4 | 0;
for (int i = 2, j = 0; i < 12; i += 2, j++) {
data[i] = this->pwm_amounts_[j] >> 0x8;
data[i + 1] = this->pwm_amounts_[j] & 0xFF;
}
this->write_buffer_(data, 12);
} else {
// All channels
data[0] = this->model_id_ + SM10BIT_ADDR_START_5CH;
data[1] = this->max_power_color_channels_ << 4 | this->max_power_white_channels_;
for (int i = 2, j = 0; i < 12; i += 2, j++) {
data[i] = this->pwm_amounts_[j] >> 0x8;
data[i + 1] = this->pwm_amounts_[j] & 0xFF;
}
this->write_buffer_(data, 12);
}
this->update_ = false;
}
void Sm10BitBase::set_channel_value_(uint8_t channel, uint16_t value) {
if (this->pwm_amounts_[channel] != value) {
this->update_ = true;
this->update_channel_ = channel;
}
this->pwm_amounts_[channel] = value;
}
void Sm10BitBase::write_bit_(bool value) {
this->clock_pin_->digital_write(false);
this->data_pin_->digital_write(value);
this->clock_pin_->digital_write(true);
}
void Sm10BitBase::write_byte_(uint8_t data) {
for (uint8_t mask = 0x80; mask; mask >>= 1) {
this->write_bit_(data & mask);
}
this->clock_pin_->digital_write(false);
this->data_pin_->digital_write(true);
this->clock_pin_->digital_write(true);
}
void Sm10BitBase::write_buffer_(uint8_t *buffer, uint8_t size) {
this->data_pin_->digital_write(false);
for (uint32_t i = 0; i < size; i++) {
this->write_byte_(buffer[i]);
}
this->clock_pin_->digital_write(false);
this->clock_pin_->digital_write(true);
this->data_pin_->digital_write(true);
}
} // namespace sm10bit_base
} // namespace esphome