VEML7700 and VEML6030 light sensors (#6067)

* VEML7700 and VEML6030 light sensors

* VEML7700 and VEML6030 light sensors - CODEOWNERS

* VEML7700 and VEML6030 light sensors - tidy up

* VEML7700 and VEML6030 light sensors - tidy up

* VEML7700 tidy up

* VEML7700 tidy up 4

* VEML7700 tidying up more

* VEML7700 after review. non-blocking approach

* VEML7700 CONSTANT_CASE

* VEML7700 merge fix

* VEML7700 pragma pack changed to attribute

* VEML7700 pragma pack -> attribute

* Minor publish split

* minor

* LOGD->LOGV

* new school tests added

* Discard changes to tests/test1.yaml

---------

Co-authored-by: Jesse Hills <3060199+jesserockz@users.noreply.github.com>
Co-authored-by: Keith Burzinski <kbx81x@gmail.com>
This commit is contained in:
Anton Viktorov 2024-03-12 03:51:01 +01:00 committed by GitHub
parent 782d662c20
commit 5b28bd3d97
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 877 additions and 0 deletions

View file

@ -380,6 +380,7 @@ esphome/components/ultrasonic/* @OttoWinter
esphome/components/uponor_smatrix/* @kroimon
esphome/components/vbus/* @ssieb
esphome/components/veml3235/* @kbx81
esphome/components/veml7700/* @latonita
esphome/components/version/* @esphome/core
esphome/components/voice_assistant/* @jesserockz
esphome/components/wake_on_lan/* @willwill2will54

View file

@ -0,0 +1 @@
CODEOWNERS = ["@latonita"]

View file

@ -0,0 +1,190 @@
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.components import i2c, sensor
from esphome.const import (
CONF_ACTUAL_GAIN,
CONF_AUTO_MODE,
CONF_FULL_SPECTRUM,
CONF_GAIN,
CONF_GLASS_ATTENUATION_FACTOR,
CONF_ID,
CONF_INFRARED,
CONF_INTEGRATION_TIME,
CONF_NAME,
UNIT_LUX,
UNIT_MILLISECOND,
ICON_BRIGHTNESS_5,
ICON_BRIGHTNESS_6,
ICON_TIMER,
DEVICE_CLASS_ILLUMINANCE,
STATE_CLASS_MEASUREMENT,
)
CODEOWNERS = ["@latonita"]
DEPENDENCIES = ["i2c"]
UNIT_COUNTS = "#"
ICON_MULTIPLICATION = "mdi:multiplication"
ICON_BRIGHTNESS_7 = "mdi:brightness-7"
CONF_ACTUAL_INTEGRATION_TIME = "actual_integration_time"
CONF_AMBIENT_LIGHT = "ambient_light"
CONF_AMBIENT_LIGHT_COUNTS = "ambient_light_counts"
CONF_FULL_SPECTRUM_COUNTS = "full_spectrum_counts"
CONF_LUX_COMPENSATION = "lux_compensation"
veml7700_ns = cg.esphome_ns.namespace("veml7700")
VEML7700Component = veml7700_ns.class_(
"VEML7700Component", cg.PollingComponent, i2c.I2CDevice
)
Gain = veml7700_ns.enum("Gain")
GAINS = {
"1/8X": Gain.X_1_8,
"1/4X": Gain.X_1_4,
"1X": Gain.X_1,
"2X": Gain.X_2,
}
IntegrationTime = veml7700_ns.enum("IntegrationTime")
INTEGRATION_TIMES = {
25: IntegrationTime.INTEGRATION_TIME_25MS,
50: IntegrationTime.INTEGRATION_TIME_50MS,
100: IntegrationTime.INTEGRATION_TIME_100MS,
200: IntegrationTime.INTEGRATION_TIME_200MS,
400: IntegrationTime.INTEGRATION_TIME_400MS,
800: IntegrationTime.INTEGRATION_TIME_800MS,
}
def validate_integration_time(value):
value = cv.positive_time_period_milliseconds(value).total_milliseconds
return cv.enum(INTEGRATION_TIMES, int=True)(value)
CONFIG_SCHEMA = cv.All(
cv.Schema(
{
cv.GenerateID(): cv.declare_id(VEML7700Component),
cv.Optional(CONF_AUTO_MODE, default=True): cv.boolean,
cv.Optional(CONF_GAIN, default="1/8X"): cv.enum(GAINS, upper=True),
cv.Optional(
CONF_INTEGRATION_TIME, default="100ms"
): validate_integration_time,
cv.Optional(CONF_LUX_COMPENSATION, default=True): cv.boolean,
cv.Optional(CONF_GLASS_ATTENUATION_FACTOR, default=1.0): cv.float_range(
min=1.0
),
cv.Optional(CONF_AMBIENT_LIGHT): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_LUX,
icon=ICON_BRIGHTNESS_6,
accuracy_decimals=1,
device_class=DEVICE_CLASS_ILLUMINANCE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_AMBIENT_LIGHT_COUNTS): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_COUNTS,
icon=ICON_BRIGHTNESS_6,
accuracy_decimals=0,
device_class=DEVICE_CLASS_ILLUMINANCE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_FULL_SPECTRUM): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_LUX,
icon=ICON_BRIGHTNESS_7,
accuracy_decimals=1,
device_class=DEVICE_CLASS_ILLUMINANCE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_FULL_SPECTRUM_COUNTS): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_COUNTS,
icon=ICON_BRIGHTNESS_7,
accuracy_decimals=0,
device_class=DEVICE_CLASS_ILLUMINANCE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_INFRARED): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_LUX,
icon=ICON_BRIGHTNESS_5,
accuracy_decimals=1,
device_class=DEVICE_CLASS_ILLUMINANCE,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_ACTUAL_GAIN): cv.maybe_simple_value(
sensor.sensor_schema(
icon=ICON_MULTIPLICATION,
accuracy_decimals=3,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
cv.Optional(CONF_ACTUAL_INTEGRATION_TIME): cv.maybe_simple_value(
sensor.sensor_schema(
unit_of_measurement=UNIT_MILLISECOND,
icon=ICON_TIMER,
accuracy_decimals=0,
state_class=STATE_CLASS_MEASUREMENT,
),
key=CONF_NAME,
),
}
)
.extend(cv.polling_component_schema("60s"))
.extend(i2c.i2c_device_schema(0x10)),
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await i2c.register_i2c_device(var, config)
if als_config := config.get(CONF_AMBIENT_LIGHT):
sens = await sensor.new_sensor(als_config)
cg.add(var.set_ambient_light_sensor(sens))
if als_cnt_config := config.get(CONF_AMBIENT_LIGHT_COUNTS):
sens = await sensor.new_sensor(als_cnt_config)
cg.add(var.set_ambient_light_counts_sensor(sens))
if full_spect_config := config.get(CONF_FULL_SPECTRUM):
sens = await sensor.new_sensor(full_spect_config)
cg.add(var.set_white_sensor(sens))
if full_spect_cnt_config := config.get(CONF_FULL_SPECTRUM_COUNTS):
sens = await sensor.new_sensor(full_spect_cnt_config)
cg.add(var.set_white_counts_sensor(sens))
if infrared_config := config.get(CONF_INFRARED):
sens = await sensor.new_sensor(infrared_config)
cg.add(var.set_infrared_sensor(sens))
if act_gain_config := config.get(CONF_ACTUAL_GAIN):
sens = await sensor.new_sensor(act_gain_config)
cg.add(var.set_actual_gain_sensor(sens))
if act_itime_config := config.get(CONF_ACTUAL_INTEGRATION_TIME):
sens = await sensor.new_sensor(act_itime_config)
cg.add(var.set_actual_integration_time_sensor(sens))
cg.add(var.set_enable_automatic_mode(config[CONF_AUTO_MODE]))
cg.add(var.set_enable_lux_compensation(config[CONF_LUX_COMPENSATION]))
cg.add(var.set_gain(config[CONF_GAIN]))
cg.add(var.set_integration_time(config[CONF_INTEGRATION_TIME]))
cg.add(var.set_glass_attenuation_factor(config[CONF_GLASS_ATTENUATION_FACTOR]))

View file

@ -0,0 +1,437 @@
#include "veml7700.h"
#include "esphome/core/application.h"
#include "esphome/core/log.h"
namespace esphome {
namespace veml7700 {
static const char *const TAG = "veml7700";
static const size_t VEML_REG_SIZE = 2;
static float reduce_to_zero(float a, float b) { return (a > b) ? (a - b) : 0; }
template<typename T, size_t size> T get_next(const T (&array)[size], const T val) {
size_t i = 0;
size_t idx = -1;
while (idx == -1 && i < size) {
if (array[i] == val) {
idx = i;
break;
}
i++;
}
if (idx == -1 || i + 1 >= size)
return val;
return array[i + 1];
}
template<typename T, size_t size> T get_prev(const T (&array)[size], const T val) {
size_t i = size - 1;
size_t idx = -1;
while (idx == -1 && i > 0) {
if (array[i] == val) {
idx = i;
break;
}
i--;
}
if (idx == -1 || i == 0)
return val;
return array[i - 1];
}
static uint16_t get_itime_ms(IntegrationTime time) {
uint16_t ms = 0;
switch (time) {
case INTEGRATION_TIME_100MS:
ms = 100;
break;
case INTEGRATION_TIME_200MS:
ms = 200;
break;
case INTEGRATION_TIME_400MS:
ms = 400;
break;
case INTEGRATION_TIME_800MS:
ms = 800;
break;
case INTEGRATION_TIME_50MS:
ms = 50;
break;
case INTEGRATION_TIME_25MS:
ms = 25;
break;
default:
ms = 100;
}
return ms;
}
static float get_gain_coeff(Gain gain) {
static const float GAIN_FLOAT[GAINS_COUNT] = {1.0f, 2.0f, 0.125f, 0.25f};
return GAIN_FLOAT[gain & 0b11];
}
static const char *get_gain_str(Gain gain) {
static const char *gain_str[GAINS_COUNT] = {"1x", "2x", "1/8x", "1/4x"};
return gain_str[gain & 0b11];
}
void VEML7700Component::setup() {
ESP_LOGCONFIG(TAG, "Setting up VEML7700/6030...");
auto err = this->configure_();
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Sensor configuration failed");
this->mark_failed();
} else {
this->state_ = State::INITIAL_SETUP_COMPLETED;
}
}
void VEML7700Component::dump_config() {
LOG_I2C_DEVICE(this);
ESP_LOGCONFIG(TAG, " Automatic gain/time: %s", YESNO(this->automatic_mode_enabled_));
if (!this->automatic_mode_enabled_) {
ESP_LOGCONFIG(TAG, " Gain: %s", get_gain_str(this->gain_));
ESP_LOGCONFIG(TAG, " Integration time: %d ms", get_itime_ms(this->integration_time_));
}
ESP_LOGCONFIG(TAG, " Lux compensation: %s", YESNO(this->lux_compensation_enabled_));
ESP_LOGCONFIG(TAG, " Glass attenuation factor: %f", this->glass_attenuation_factor_);
LOG_UPDATE_INTERVAL(this);
LOG_SENSOR(" ", "ALS channel lux", this->ambient_light_sensor_);
LOG_SENSOR(" ", "ALS channel counts", this->ambient_light_counts_sensor_);
LOG_SENSOR(" ", "WHITE channel lux", this->white_sensor_);
LOG_SENSOR(" ", "WHITE channel counts", this->white_counts_sensor_);
LOG_SENSOR(" ", "FAKE_IR channel lux", this->fake_infrared_sensor_);
LOG_SENSOR(" ", "Actual gain", this->actual_gain_sensor_);
LOG_SENSOR(" ", "Actual integration time", this->actual_integration_time_sensor_);
if (this->is_failed()) {
ESP_LOGE(TAG, "Communication with I2C VEML7700/6030 failed!");
}
}
void VEML7700Component::update() {
if (this->is_ready() && this->state_ == State::IDLE) {
ESP_LOGV(TAG, "Update: Initiating new data collection");
this->state_ = this->automatic_mode_enabled_ ? State::COLLECTING_DATA_AUTO : State::COLLECTING_DATA;
this->readings_.als_counts = 0;
this->readings_.white_counts = 0;
this->readings_.actual_time = this->integration_time_;
this->readings_.actual_gain = this->gain_;
this->readings_.als_lux = 0;
this->readings_.white_lux = 0;
this->readings_.fake_infrared_lux = 0;
} else {
ESP_LOGV(TAG, "Update: Component not ready yet");
}
}
void VEML7700Component::loop() {
ErrorCode err = i2c::ERROR_OK;
if (this->state_ == State::INITIAL_SETUP_COMPLETED) {
// Datasheet: 2.5 ms before the first measurement is needed, allowing for the correct start of the signal processor
// and oscillator.
// Reality: wait for couple integration times to have first samples captured
this->set_timeout(2 * this->integration_time_, [this]() { this->state_ = State::IDLE; });
}
if (this->is_ready()) {
switch (this->state_) {
case State::IDLE:
// doing nothing, having best time
break;
case State::COLLECTING_DATA:
err = this->read_sensor_output_(this->readings_);
this->state_ = (err == i2c::ERROR_OK) ? State::DATA_COLLECTED : State::IDLE;
break;
case State::COLLECTING_DATA_AUTO: // Automatic mode - we start here to reconfigure device first
case State::DATA_COLLECTED:
if (!this->are_adjustments_required_(this->readings_)) {
this->state_ = State::READY_TO_PUBLISH_PART_1;
} else {
// if sensitivity adjustment needed -
// shutdown device to change config and wait one integration time period
this->state_ = State::ADJUSTMENT_IN_PROGRESS;
err = this->reconfigure_time_and_gain_(this->readings_.actual_time, this->readings_.actual_gain, true);
if (err == i2c::ERROR_OK) {
this->set_timeout(1 * get_itime_ms(this->readings_.actual_time),
[this]() { this->state_ = State::READY_TO_APPLY_ADJUSTMENTS; });
} else {
this->state_ = State::IDLE;
}
}
break;
case State::ADJUSTMENT_IN_PROGRESS:
// nothing to be done, just waiting for the timeout
break;
case State::READY_TO_APPLY_ADJUSTMENTS:
// second stage of sensitivity adjustment - turn device back on
// and wait 2-3 integration time periods to get good data samples
this->state_ = State::ADJUSTMENT_IN_PROGRESS;
err = this->reconfigure_time_and_gain_(this->readings_.actual_time, this->readings_.actual_gain, false);
if (err == i2c::ERROR_OK) {
this->set_timeout(3 * get_itime_ms(this->readings_.actual_time),
[this]() { this->state_ = State::COLLECTING_DATA; });
} else {
this->state_ = State::IDLE;
}
break;
case State::READY_TO_PUBLISH_PART_1:
this->status_clear_warning();
this->apply_lux_calculation_(this->readings_);
this->apply_lux_compensation_(this->readings_);
this->apply_glass_attenuation_(this->readings_);
this->publish_data_part_1_(this->readings_);
this->state_ = State::READY_TO_PUBLISH_PART_2;
break;
case State::READY_TO_PUBLISH_PART_2:
this->publish_data_part_2_(this->readings_);
this->state_ = State::READY_TO_PUBLISH_PART_3;
break;
case State::READY_TO_PUBLISH_PART_3:
this->publish_data_part_3_(this->readings_);
this->state_ = State::IDLE;
break;
default:
break;
}
if (err != i2c::ERROR_OK)
this->status_set_warning();
}
}
ErrorCode VEML7700Component::configure_() {
ESP_LOGV(TAG, "Configure");
ConfigurationRegister als_conf{0};
als_conf.ALS_INT_EN = false;
als_conf.ALS_PERS = Persistence::PERSISTENCE_1;
als_conf.ALS_IT = this->integration_time_;
als_conf.ALS_GAIN = this->gain_;
als_conf.ALS_SD = true;
ESP_LOGV(TAG, "Shutdown before config. ALS_CONF_0 to 0x%04X", als_conf.raw);
auto err = this->write_register((uint8_t) CommandRegisters::ALS_CONF_0, als_conf.raw_bytes, VEML_REG_SIZE);
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Failed to shutdown, I2C error %d", err);
return err;
}
delay(3);
als_conf.ALS_SD = false;
ESP_LOGV(TAG, "Turning on. Setting ALS_CONF_0 to 0x%04X", als_conf.raw);
err = this->write_register((uint8_t) CommandRegisters::ALS_CONF_0, als_conf.raw_bytes, VEML_REG_SIZE);
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Failed to turn on, I2C error %d", err);
return err;
}
PSMRegister psm{0};
psm.PSM = PSM::PSM_MODE_1;
psm.PSM_EN = false;
ESP_LOGV(TAG, "Setting PSM to 0x%04X", psm.raw);
err = this->write_register((uint8_t) CommandRegisters::PWR_SAVING, psm.raw_bytes, VEML_REG_SIZE);
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Failed to set PSM, I2C error %d", err);
return err;
}
return err;
}
ErrorCode VEML7700Component::reconfigure_time_and_gain_(IntegrationTime time, Gain gain, bool shutdown) {
ESP_LOGV(TAG, "Reconfigure time and gain (%d ms, %s) %s", get_itime_ms(time), get_gain_str(gain),
shutdown ? "Shutting down" : "Turning back on");
ConfigurationRegister als_conf{0};
als_conf.raw = 0;
// We have to before changing parameters
als_conf.ALS_SD = shutdown;
als_conf.ALS_INT_EN = false;
als_conf.ALS_PERS = Persistence::PERSISTENCE_1;
als_conf.ALS_IT = time;
als_conf.ALS_GAIN = gain;
auto err = this->write_register((uint8_t) CommandRegisters::ALS_CONF_0, als_conf.raw_bytes, VEML_REG_SIZE);
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "%s failed", shutdown ? "Shutdown" : "Turn on");
}
return err;
}
ErrorCode VEML7700Component::read_sensor_output_(Readings &data) {
auto als_err =
this->read_register((uint8_t) CommandRegisters::ALS, (uint8_t *) &data.als_counts, VEML_REG_SIZE, false);
if (als_err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Error reading ALS register, err = %d", als_err);
}
auto white_err =
this->read_register((uint8_t) CommandRegisters::WHITE, (uint8_t *) &data.white_counts, VEML_REG_SIZE, false);
if (white_err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Error reading WHITE register, err = %d", white_err);
}
ConfigurationRegister conf{0};
auto err =
this->read_register((uint8_t) CommandRegisters::ALS_CONF_0, (uint8_t *) conf.raw_bytes, VEML_REG_SIZE, false);
if (err != i2c::ERROR_OK) {
ESP_LOGW(TAG, "Error reading ALS_CONF_0 register, err = %d", white_err);
}
data.actual_time = conf.ALS_IT;
data.actual_gain = conf.ALS_GAIN;
ESP_LOGV(TAG, "Data from sensors: ALS = %d, WHITE = %d, Gain = %s, Time = %d ms", data.als_counts, data.white_counts,
get_gain_str(data.actual_gain), get_itime_ms(data.actual_time));
return std::max(als_err, white_err);
}
bool VEML7700Component::are_adjustments_required_(Readings &data) {
// skip first sample in auto mode -
// we need to reconfigure device after last measurement
if (this->state_ == State::COLLECTING_DATA_AUTO)
return true;
if (!this->automatic_mode_enabled_)
return false;
// Recommended thresholds as per datasheet
static constexpr uint16_t LOW_INTENSITY_THRESHOLD = 100;
static constexpr uint16_t HIGH_INTENSITY_THRESHOLD = 10000;
static const IntegrationTime TIMES[INTEGRATION_TIMES_COUNT] = {INTEGRATION_TIME_25MS, INTEGRATION_TIME_50MS,
INTEGRATION_TIME_100MS, INTEGRATION_TIME_200MS,
INTEGRATION_TIME_400MS, INTEGRATION_TIME_800MS};
static const Gain GAINS[GAINS_COUNT] = {X_1_8, X_1_4, X_1, X_2};
if (data.als_counts <= LOW_INTENSITY_THRESHOLD) {
Gain next_gain = get_next(GAINS, data.actual_gain);
if (next_gain != data.actual_gain) {
data.actual_gain = next_gain;
return true;
}
IntegrationTime next_time = get_next(TIMES, data.actual_time);
if (next_time != data.actual_time) {
data.actual_time = next_time;
return true;
}
} else if (data.als_counts >= HIGH_INTENSITY_THRESHOLD) {
Gain prev_gain = get_prev(GAINS, data.actual_gain);
if (prev_gain != data.actual_gain) {
data.actual_gain = prev_gain;
return true;
}
IntegrationTime prev_time = get_prev(TIMES, data.actual_time);
if (prev_time != data.actual_time) {
data.actual_time = prev_time;
return true;
}
}
// Counts are either good (between thresholds)
// or there is no room to change sensitivity anymore
return false;
}
void VEML7700Component::apply_lux_calculation_(Readings &data) {
static const float MAX_GAIN = 2.0f;
static const float MAX_ITIME_MS = 800.0f;
static const float MAX_LX_RESOLUTION = 0.0036f;
float lux_resolution = (MAX_ITIME_MS / (float) get_itime_ms(data.actual_time)) *
(MAX_GAIN / get_gain_coeff(data.actual_gain)) * MAX_LX_RESOLUTION;
ESP_LOGV(TAG, "Lux resolution for (%d, %s) = %.4f ", get_itime_ms(data.actual_time), get_gain_str(data.actual_gain),
lux_resolution);
data.als_lux = lux_resolution * (float) data.als_counts;
data.white_lux = lux_resolution * (float) data.white_counts;
data.fake_infrared_lux = reduce_to_zero(data.white_lux, data.als_lux);
ESP_LOGV(TAG, "%s mode - ALS = %.1f lx, WHITE = %.1f lx, FAKE_IR = %.1f lx",
this->automatic_mode_enabled_ ? "Automatic" : "Manual", data.als_lux, data.white_lux,
data.fake_infrared_lux);
}
void VEML7700Component::apply_lux_compensation_(Readings &data) {
if (!this->lux_compensation_enabled_)
return;
auto &local_data = data;
// Always apply correction for G1/4 and G1/8
// Other Gains G1 and G2 are not supposed to be used for lux > 1000,
// corrections may help, but not a lot.
//
// "Illumination values higher than 1000 lx show non-linearity.
// This non-linearity is the same for all sensors, so a compensation formula can be applied
// if this light level is exceeded"
auto compensate = [&local_data](float &lux) {
auto calculate_high_lux_compensation = [](float lux_veml) -> float {
return (((6.0135e-13 * lux_veml - 9.3924e-9) * lux_veml + 8.1488e-5) * lux_veml + 1.0023) * lux_veml;
};
if (lux > 1000.0f || local_data.actual_gain == Gain::X_1_8 || local_data.actual_gain == Gain::X_1_4) {
lux = calculate_high_lux_compensation(lux);
}
};
compensate(data.als_lux);
compensate(data.white_lux);
data.fake_infrared_lux = reduce_to_zero(data.white_lux, data.als_lux);
ESP_LOGV(TAG, "Lux compensation - ALS = %.1f lx, WHITE = %.1f lx, FAKE_IR = %.1f lx", data.als_lux, data.white_lux,
data.fake_infrared_lux);
}
void VEML7700Component::apply_glass_attenuation_(Readings &data) {
data.als_lux *= this->glass_attenuation_factor_;
data.white_lux *= this->glass_attenuation_factor_;
data.fake_infrared_lux = reduce_to_zero(data.white_lux, data.als_lux);
ESP_LOGV(TAG, "Glass attenuation - ALS = %.1f lx, WHITE = %.1f lx, FAKE_IR = %.1f lx", data.als_lux, data.white_lux,
data.fake_infrared_lux);
}
void VEML7700Component::publish_data_part_1_(Readings &data) {
if (this->ambient_light_sensor_ != nullptr) {
this->ambient_light_sensor_->publish_state(data.als_lux);
}
if (this->white_sensor_ != nullptr) {
this->white_sensor_->publish_state(data.white_lux);
}
}
void VEML7700Component::publish_data_part_2_(Readings &data) {
if (this->fake_infrared_sensor_ != nullptr) {
this->fake_infrared_sensor_->publish_state(data.fake_infrared_lux);
}
if (this->ambient_light_counts_sensor_ != nullptr) {
this->ambient_light_counts_sensor_->publish_state(data.als_counts);
}
if (this->white_counts_sensor_ != nullptr) {
this->white_counts_sensor_->publish_state(data.white_counts);
}
}
void VEML7700Component::publish_data_part_3_(Readings &data) {
if (this->actual_gain_sensor_ != nullptr) {
this->actual_gain_sensor_->publish_state(get_gain_coeff(data.actual_gain));
}
if (this->actual_integration_time_sensor_ != nullptr) {
this->actual_integration_time_sensor_->publish_state(get_itime_ms(data.actual_time));
}
}
} // namespace veml7700
} // namespace esphome

View file

@ -0,0 +1,202 @@
#pragma once
#include "esphome/components/i2c/i2c.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/core/component.h"
#include "esphome/core/optional.h"
namespace esphome {
namespace veml7700 {
using esphome::i2c::ErrorCode;
//
// Datasheet: https://www.vishay.com/docs/84286/veml7700.pdf
//
enum class CommandRegisters : uint8_t {
ALS_CONF_0 = 0x00, // W: ALS gain, integration time, interrupt, and shutdown
ALS_WH = 0x01, // W: ALS high threshold window setting
ALS_WL = 0x02, // W: ALS low threshold window setting
PWR_SAVING = 0x03, // W: Set (15 : 3) 0000 0000 0000 0b
ALS = 0x04, // R: MSB, LSB data of whole ALS 16 bits
WHITE = 0x05, // R: MSB, LSB data of whole WHITE 16 bits
ALS_INT = 0x06 // R: ALS INT trigger event
};
enum Gain : uint8_t {
X_1 = 0,
X_2 = 1,
X_1_8 = 2,
X_1_4 = 3,
};
const uint8_t GAINS_COUNT = 4;
enum IntegrationTime : uint8_t {
INTEGRATION_TIME_25MS = 0b1100,
INTEGRATION_TIME_50MS = 0b1000,
INTEGRATION_TIME_100MS = 0b0000,
INTEGRATION_TIME_200MS = 0b0001,
INTEGRATION_TIME_400MS = 0b0010,
INTEGRATION_TIME_800MS = 0b0011,
};
const uint8_t INTEGRATION_TIMES_COUNT = 6;
enum Persistence : uint8_t {
PERSISTENCE_1 = 0,
PERSISTENCE_2 = 1,
PERSISTENCE_4 = 2,
PERSISTENCE_8 = 3,
};
enum PSM : uint8_t {
PSM_MODE_1 = 0,
PSM_MODE_2 = 1,
PSM_MODE_3 = 2,
PSM_MODE_4 = 3,
};
// The following section with bit-fields brings GCC compilation 'notes' about padding bytes due to bug in older GCC back
// in 2009 "Packed bit-fields of type char were not properly bit-packed on many targets prior to GCC 4.4" Even more to
// this - this message can't be disabled with "#pragma GCC diagnostic ignored" due to another bug which was only fixed
// in GCC 13 in 2022 :) No actions required, it is just a note. The code is correct.
//
// VEML7700_CR_ALS_CONF_0 Register (0x00)
//
union ConfigurationRegister {
uint16_t raw;
uint8_t raw_bytes[2];
struct {
bool ALS_SD : 1; // ALS shut down setting: 0 = ALS power on, 1 = ALS shut
// down
bool ALS_INT_EN : 1; // ALS interrupt enable setting: 0 = ALS INT disable, 1
// = ALS INT enable
bool reserved_2 : 1; // 0
bool reserved_3 : 1; // 0
Persistence ALS_PERS : 2; // 00 - 1, 01- 2, 10 - 4, 11 - 8
IntegrationTime ALS_IT : 4; // ALS integration time setting
bool reserved_10 : 1; // 0
Gain ALS_GAIN : 2; // Gain selection
bool reserved_13 : 1; // 0
bool reserved_14 : 1; // 0
bool reserved_15 : 1; // 0
} __attribute__((packed));
};
//
// Power Saving Mode: PSM Register (0x03)
//
union PSMRegister {
uint16_t raw;
uint8_t raw_bytes[2];
struct {
bool PSM_EN : 1;
uint8_t PSM : 2;
uint16_t reserved : 13;
} __attribute__((packed));
};
class VEML7700Component : public PollingComponent, public i2c::I2CDevice {
public:
//
// EspHome framework functions
//
float get_setup_priority() const override { return setup_priority::DATA; }
void setup() override;
void dump_config() override;
void update() override;
void loop() override;
//
// Configuration setters
//
void set_gain(Gain gain) { this->gain_ = gain; }
void set_integration_time(IntegrationTime time) { this->integration_time_ = time; }
void set_enable_automatic_mode(bool enable) { this->automatic_mode_enabled_ = enable; }
void set_enable_lux_compensation(bool enable) { this->lux_compensation_enabled_ = enable; }
void set_glass_attenuation_factor(float factor) { this->glass_attenuation_factor_ = factor; }
void set_ambient_light_sensor(sensor::Sensor *sensor) { this->ambient_light_sensor_ = sensor; }
void set_ambient_light_counts_sensor(sensor::Sensor *sensor) { this->ambient_light_counts_sensor_ = sensor; }
void set_white_sensor(sensor::Sensor *sensor) { this->white_sensor_ = sensor; }
void set_white_counts_sensor(sensor::Sensor *sensor) { this->white_counts_sensor_ = sensor; }
void set_infrared_sensor(sensor::Sensor *sensor) { this->fake_infrared_sensor_ = sensor; }
void set_actual_gain_sensor(sensor::Sensor *sensor) { this->actual_gain_sensor_ = sensor; }
void set_actual_integration_time_sensor(sensor::Sensor *sensor) { this->actual_integration_time_sensor_ = sensor; }
protected:
//
// Internal state machine, used to split all the actions into
// small steps in loop() to make sure we are not blocking execution
//
enum class State : uint8_t {
NOT_INITIALIZED,
INITIAL_SETUP_COMPLETED,
IDLE,
COLLECTING_DATA,
COLLECTING_DATA_AUTO,
DATA_COLLECTED,
ADJUSTMENT_NEEDED,
ADJUSTMENT_IN_PROGRESS,
READY_TO_APPLY_ADJUSTMENTS,
READY_TO_PUBLISH_PART_1,
READY_TO_PUBLISH_PART_2,
READY_TO_PUBLISH_PART_3
} state_{State::NOT_INITIALIZED};
//
// Current measurements data
//
struct Readings {
uint16_t als_counts{0};
uint16_t white_counts{0};
IntegrationTime actual_time{INTEGRATION_TIME_100MS};
Gain actual_gain{X_1_8};
float als_lux{0};
float white_lux{0};
float fake_infrared_lux{0};
ErrorCode err{i2c::ERROR_OK};
} readings_;
//
// Device interaction
//
ErrorCode configure_();
ErrorCode reconfigure_time_and_gain_(IntegrationTime time, Gain gain, bool shutdown);
ErrorCode read_sensor_output_(Readings &data);
//
// Working with the data
//
bool are_adjustments_required_(Readings &data);
void apply_lux_calculation_(Readings &data);
void apply_lux_compensation_(Readings &data);
void apply_glass_attenuation_(Readings &data);
void publish_data_part_1_(Readings &data);
void publish_data_part_2_(Readings &data);
void publish_data_part_3_(Readings &data);
//
// Component configuration
//
bool automatic_mode_enabled_{true};
bool lux_compensation_enabled_{true};
float glass_attenuation_factor_{1.0};
IntegrationTime integration_time_{INTEGRATION_TIME_100MS};
Gain gain_{X_1};
//
// Sensors for publishing data
//
sensor::Sensor *ambient_light_sensor_{nullptr}; // Human eye range 500-600 nm, lx
sensor::Sensor *ambient_light_counts_sensor_{nullptr}; // Raw counts
sensor::Sensor *white_sensor_{nullptr}; // Wide range 450-950 nm, lx
sensor::Sensor *white_counts_sensor_{nullptr}; // Raw counts
sensor::Sensor *fake_infrared_sensor_{nullptr}; // Artificial. = WHITE lx - ALS lx.
sensor::Sensor *actual_gain_sensor_{nullptr}; // Actual gain multiplier for the measurement
sensor::Sensor *actual_integration_time_sensor_{nullptr}; // Actual integration time for the measurement
};
} // namespace veml7700
} // namespace esphome

View file

@ -0,0 +1,10 @@
sensor:
- platform: veml7700
address: 0x10
i2c_id: i2c_veml7700
ambient_light: Ambient light
ambient_light_counts: Ambient light counts
full_spectrum: Full spectrum
full_spectrum_counts: Full spectrum counts
actual_integration_time: Actual integration time
actual_gain: Actual gain

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 5
sda: 4
<<: !include common.yaml

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 5
sda: 4
<<: !include common.yaml

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 16
sda: 17
<<: !include common.yaml

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 16
sda: 17
<<: !include common.yaml

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 5
sda: 4
<<: !include common.yaml

View file

@ -0,0 +1,6 @@
i2c:
- id: i2c_veml7700
scl: 5
sda: 4
<<: !include common.yaml