mirror of
https://github.com/esphome/esphome.git
synced 2025-01-25 05:44:28 +01:00
Refactor ATM90E32 to reduce blocking time and improve accuracy. (#5670)
Co-authored-by: descipher <120155735+GelidusResearch@users.noreply.github.com>
This commit is contained in:
parent
430ee43b93
commit
cd89c38a07
5 changed files with 473 additions and 265 deletions
|
@ -117,7 +117,7 @@ void ATM90E26Component::setup() {
|
||||||
this->write16_(ATM90E26_REGISTER_ADJSTART,
|
this->write16_(ATM90E26_REGISTER_ADJSTART,
|
||||||
0x8765); // Checks correctness of 31-3A registers and starts normal measurement if ok
|
0x8765); // Checks correctness of 31-3A registers and starts normal measurement if ok
|
||||||
|
|
||||||
uint16_t sys_status = this->read16_(ATM90E26_REGISTER_SYSSTATUS);
|
const uint16_t sys_status = this->read16_(ATM90E26_REGISTER_SYSSTATUS);
|
||||||
if (sys_status & 0xC000) { // Checksum 1 Error
|
if (sys_status & 0xC000) { // Checksum 1 Error
|
||||||
|
|
||||||
ESP_LOGW(TAG, "Could not initialize ATM90E26 IC: CS1 was incorrect, expected: 0x%04X",
|
ESP_LOGW(TAG, "Could not initialize ATM90E26 IC: CS1 was incorrect, expected: 0x%04X",
|
||||||
|
@ -177,27 +177,27 @@ void ATM90E26Component::write16_(uint8_t a_register, uint16_t val) {
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_line_current_() {
|
float ATM90E26Component::get_line_current_() {
|
||||||
uint16_t current = this->read16_(ATM90E26_REGISTER_IRMS);
|
const uint16_t current = this->read16_(ATM90E26_REGISTER_IRMS);
|
||||||
return current / 1000.0f;
|
return current / 1000.0f;
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_line_voltage_() {
|
float ATM90E26Component::get_line_voltage_() {
|
||||||
uint16_t voltage = this->read16_(ATM90E26_REGISTER_URMS);
|
const uint16_t voltage = this->read16_(ATM90E26_REGISTER_URMS);
|
||||||
return voltage / 100.0f;
|
return voltage / 100.0f;
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_active_power_() {
|
float ATM90E26Component::get_active_power_() {
|
||||||
int16_t val = this->read16_(ATM90E26_REGISTER_PMEAN); // two's complement
|
const int16_t val = this->read16_(ATM90E26_REGISTER_PMEAN); // two's complement
|
||||||
return (float) val;
|
return (float) val;
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_reactive_power_() {
|
float ATM90E26Component::get_reactive_power_() {
|
||||||
int16_t val = this->read16_(ATM90E26_REGISTER_QMEAN); // two's complement
|
const int16_t val = this->read16_(ATM90E26_REGISTER_QMEAN); // two's complement
|
||||||
return (float) val;
|
return (float) val;
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_power_factor_() {
|
float ATM90E26Component::get_power_factor_() {
|
||||||
uint16_t val = this->read16_(ATM90E26_REGISTER_POWERF); // signed
|
const uint16_t val = this->read16_(ATM90E26_REGISTER_POWERF); // signed
|
||||||
if (val & 0x8000) {
|
if (val & 0x8000) {
|
||||||
return -(val & 0x7FF) / 1000.0f;
|
return -(val & 0x7FF) / 1000.0f;
|
||||||
} else {
|
} else {
|
||||||
|
@ -206,7 +206,7 @@ float ATM90E26Component::get_power_factor_() {
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_forward_active_energy_() {
|
float ATM90E26Component::get_forward_active_energy_() {
|
||||||
uint16_t val = this->read16_(ATM90E26_REGISTER_APENERGY);
|
const uint16_t val = this->read16_(ATM90E26_REGISTER_APENERGY);
|
||||||
if ((UINT32_MAX - this->cumulative_forward_active_energy_) > val) {
|
if ((UINT32_MAX - this->cumulative_forward_active_energy_) > val) {
|
||||||
this->cumulative_forward_active_energy_ += val;
|
this->cumulative_forward_active_energy_ += val;
|
||||||
} else {
|
} else {
|
||||||
|
@ -217,7 +217,7 @@ float ATM90E26Component::get_forward_active_energy_() {
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_reverse_active_energy_() {
|
float ATM90E26Component::get_reverse_active_energy_() {
|
||||||
uint16_t val = this->read16_(ATM90E26_REGISTER_ANENERGY);
|
const uint16_t val = this->read16_(ATM90E26_REGISTER_ANENERGY);
|
||||||
if (UINT32_MAX - this->cumulative_reverse_active_energy_ > val) {
|
if (UINT32_MAX - this->cumulative_reverse_active_energy_ > val) {
|
||||||
this->cumulative_reverse_active_energy_ += val;
|
this->cumulative_reverse_active_energy_ += val;
|
||||||
} else {
|
} else {
|
||||||
|
@ -227,7 +227,7 @@ float ATM90E26Component::get_reverse_active_energy_() {
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E26Component::get_frequency_() {
|
float ATM90E26Component::get_frequency_() {
|
||||||
uint16_t freq = this->read16_(ATM90E26_REGISTER_FREQ);
|
const uint16_t freq = this->read16_(ATM90E26_REGISTER_FREQ);
|
||||||
return freq / 100.0f;
|
return freq / 100.0f;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -7,75 +7,112 @@ namespace esphome {
|
||||||
namespace atm90e32 {
|
namespace atm90e32 {
|
||||||
|
|
||||||
static const char *const TAG = "atm90e32";
|
static const char *const TAG = "atm90e32";
|
||||||
|
void ATM90E32Component::loop() {
|
||||||
void ATM90E32Component::update() {
|
if (this->get_publish_interval_flag_()) {
|
||||||
if (this->read16_(ATM90E32_REGISTER_METEREN) != 1) {
|
this->set_publish_interval_flag_(false);
|
||||||
this->status_set_warning();
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
return;
|
if (this->phase_[phase].voltage_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].voltage_ = this->get_phase_voltage_(phase);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (this->phase_[0].voltage_sensor_ != nullptr) {
|
|
||||||
this->phase_[0].voltage_sensor_->publish_state(this->get_line_voltage_a_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[1].voltage_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[1].voltage_sensor_->publish_state(this->get_line_voltage_b_());
|
if (this->phase_[phase].current_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].current_ = this->get_phase_current_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[2].voltage_sensor_ != nullptr) {
|
|
||||||
this->phase_[2].voltage_sensor_->publish_state(this->get_line_voltage_c_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[0].current_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[0].current_sensor_->publish_state(this->get_line_current_a_());
|
if (this->phase_[phase].power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].active_power_ = this->get_phase_active_power_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[1].current_sensor_ != nullptr) {
|
|
||||||
this->phase_[1].current_sensor_->publish_state(this->get_line_current_b_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[2].current_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[2].current_sensor_->publish_state(this->get_line_current_c_());
|
if (this->phase_[phase].power_factor_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].power_factor_ = this->get_phase_power_factor_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[0].power_sensor_ != nullptr) {
|
|
||||||
this->phase_[0].power_sensor_->publish_state(this->get_active_power_a_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[1].power_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[1].power_sensor_->publish_state(this->get_active_power_b_());
|
if (this->phase_[phase].reactive_power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].reactive_power_ = this->get_phase_reactive_power_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[2].power_sensor_ != nullptr) {
|
|
||||||
this->phase_[2].power_sensor_->publish_state(this->get_active_power_c_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[0].reactive_power_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[0].reactive_power_sensor_->publish_state(this->get_reactive_power_a_());
|
if (this->phase_[phase].forward_active_energy_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].forward_active_energy_ = this->get_phase_forward_active_energy_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[1].reactive_power_sensor_ != nullptr) {
|
|
||||||
this->phase_[1].reactive_power_sensor_->publish_state(this->get_reactive_power_b_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[2].reactive_power_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[2].reactive_power_sensor_->publish_state(this->get_reactive_power_c_());
|
if (this->phase_[phase].reverse_active_energy_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].reverse_active_energy_ = this->get_phase_reverse_active_energy_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[0].power_factor_sensor_ != nullptr) {
|
|
||||||
this->phase_[0].power_factor_sensor_->publish_state(this->get_power_factor_a_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[1].power_factor_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[1].power_factor_sensor_->publish_state(this->get_power_factor_b_());
|
if (this->phase_[phase].phase_angle_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].phase_angle_ = this->get_phase_angle_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[2].power_factor_sensor_ != nullptr) {
|
|
||||||
this->phase_[2].power_factor_sensor_->publish_state(this->get_power_factor_c_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[0].forward_active_energy_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[0].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_a_());
|
if (this->phase_[phase].harmonic_active_power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].harmonic_active_power_ = this->get_phase_harmonic_active_power_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[1].forward_active_energy_sensor_ != nullptr) {
|
|
||||||
this->phase_[1].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_b_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[2].forward_active_energy_sensor_ != nullptr) {
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
this->phase_[2].forward_active_energy_sensor_->publish_state(this->get_forward_active_energy_c_());
|
if (this->phase_[phase].peak_current_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].peak_current_ = this->get_phase_peak_current_(phase);
|
||||||
}
|
}
|
||||||
if (this->phase_[0].reverse_active_energy_sensor_ != nullptr) {
|
|
||||||
this->phase_[0].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_a_());
|
|
||||||
}
|
}
|
||||||
if (this->phase_[1].reverse_active_energy_sensor_ != nullptr) {
|
// After the local store in collected we can publish them trusting they are withing +-1 haardware sampling
|
||||||
this->phase_[1].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_b_());
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].voltage_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].voltage_sensor_->publish_state(this->get_local_phase_voltage_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].current_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].current_sensor_->publish_state(this->get_local_phase_current_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].power_sensor_->publish_state(this->get_local_phase_active_power_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].power_factor_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].power_factor_sensor_->publish_state(this->get_local_phase_power_factor_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].reactive_power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].reactive_power_sensor_->publish_state(this->get_local_phase_reactive_power_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].forward_active_energy_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].forward_active_energy_sensor_->publish_state(
|
||||||
|
this->get_local_phase_forward_active_energy_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].reverse_active_energy_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].reverse_active_energy_sensor_->publish_state(
|
||||||
|
this->get_local_phase_reverse_active_energy_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].phase_angle_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].phase_angle_sensor_->publish_state(this->get_local_phase_angle_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].harmonic_active_power_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].harmonic_active_power_sensor_->publish_state(
|
||||||
|
this->get_local_phase_harmonic_active_power_(phase));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (uint8_t phase = 0; phase < 3; phase++) {
|
||||||
|
if (this->phase_[phase].peak_current_sensor_ != nullptr) {
|
||||||
|
this->phase_[phase].peak_current_sensor_->publish_state(this->get_local_phase_peak_current_(phase));
|
||||||
}
|
}
|
||||||
if (this->phase_[2].reverse_active_energy_sensor_ != nullptr) {
|
|
||||||
this->phase_[2].reverse_active_energy_sensor_->publish_state(this->get_reverse_active_energy_c_());
|
|
||||||
}
|
}
|
||||||
if (this->freq_sensor_ != nullptr) {
|
if (this->freq_sensor_ != nullptr) {
|
||||||
this->freq_sensor_->publish_state(this->get_frequency_());
|
this->freq_sensor_->publish_state(this->get_frequency_());
|
||||||
|
@ -83,6 +120,15 @@ void ATM90E32Component::update() {
|
||||||
if (this->chip_temperature_sensor_ != nullptr) {
|
if (this->chip_temperature_sensor_ != nullptr) {
|
||||||
this->chip_temperature_sensor_->publish_state(this->get_chip_temperature_());
|
this->chip_temperature_sensor_->publish_state(this->get_chip_temperature_());
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ATM90E32Component::update() {
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_METEREN) != 1) {
|
||||||
|
this->status_set_warning();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this->set_publish_interval_flag_(true);
|
||||||
this->status_clear_warning();
|
this->status_clear_warning();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -101,13 +147,16 @@ void ATM90E32Component::setup() {
|
||||||
}
|
}
|
||||||
|
|
||||||
this->write16_(ATM90E32_REGISTER_SOFTRESET, 0x789A); // Perform soft reset
|
this->write16_(ATM90E32_REGISTER_SOFTRESET, 0x789A); // Perform soft reset
|
||||||
|
delay(6); // Wait for the minimum 5ms + 1ms
|
||||||
this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x55AA); // enable register config access
|
this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x55AA); // enable register config access
|
||||||
this->write16_(ATM90E32_REGISTER_METEREN, 0x0001); // Enable Metering
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != 0x55AA) {
|
||||||
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != 0x0001) {
|
|
||||||
ESP_LOGW(TAG, "Could not initialize ATM90E32 IC, check SPI settings");
|
ESP_LOGW(TAG, "Could not initialize ATM90E32 IC, check SPI settings");
|
||||||
this->mark_failed();
|
this->mark_failed();
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
this->write16_(ATM90E32_REGISTER_METEREN, 0x0001); // Enable Metering
|
||||||
|
this->write16_(ATM90E32_REGISTER_SAGPEAKDETCFG, 0xFF3F); // Peak Detector time ms (15:8), Sag Period ms (7:0)
|
||||||
this->write16_(ATM90E32_REGISTER_PLCONSTH, 0x0861); // PL Constant MSB (default) = 140625000
|
this->write16_(ATM90E32_REGISTER_PLCONSTH, 0x0861); // PL Constant MSB (default) = 140625000
|
||||||
this->write16_(ATM90E32_REGISTER_PLCONSTL, 0xC468); // PL Constant LSB (default)
|
this->write16_(ATM90E32_REGISTER_PLCONSTL, 0xC468); // PL Constant LSB (default)
|
||||||
this->write16_(ATM90E32_REGISTER_ZXCONFIG, 0xD654); // ZX2, ZX1, ZX0 pin config
|
this->write16_(ATM90E32_REGISTER_ZXCONFIG, 0xD654); // ZX2, ZX1, ZX0 pin config
|
||||||
|
@ -115,14 +164,33 @@ void ATM90E32Component::setup() {
|
||||||
this->write16_(ATM90E32_REGISTER_MMODE1, pga_gain_); // PGA Gain Configuration for Current Channels
|
this->write16_(ATM90E32_REGISTER_MMODE1, pga_gain_); // PGA Gain Configuration for Current Channels
|
||||||
this->write16_(ATM90E32_REGISTER_PSTARTTH, 0x1D4C); // All Active Startup Power Threshold - 0.02A/0.00032 = 7500
|
this->write16_(ATM90E32_REGISTER_PSTARTTH, 0x1D4C); // All Active Startup Power Threshold - 0.02A/0.00032 = 7500
|
||||||
this->write16_(ATM90E32_REGISTER_QSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50%
|
this->write16_(ATM90E32_REGISTER_QSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50%
|
||||||
|
this->write16_(ATM90E32_REGISTER_SSTARTTH, 0x1D4C); // All Reactive Startup Power Threshold - 50%
|
||||||
this->write16_(ATM90E32_REGISTER_PPHASETH, 0x02EE); // Each Phase Active Phase Threshold - 0.002A/0.00032 = 750
|
this->write16_(ATM90E32_REGISTER_PPHASETH, 0x02EE); // Each Phase Active Phase Threshold - 0.002A/0.00032 = 750
|
||||||
this->write16_(ATM90E32_REGISTER_QPHASETH, 0x02EE); // Each phase Reactive Phase Threshold - 10%
|
this->write16_(ATM90E32_REGISTER_QPHASETH, 0x02EE); // Each phase Reactive Phase Threshold - 10%
|
||||||
this->write16_(ATM90E32_REGISTER_UGAINA, this->phase_[0].volt_gain_); // A Voltage rms gain
|
// Setup voltage and current calibration offsets for PHASE A
|
||||||
this->write16_(ATM90E32_REGISTER_IGAINA, this->phase_[0].ct_gain_); // A line current gain
|
this->phase_[PHASEA].voltage_offset_ = calibrate_voltage_offset_phase(PHASEA);
|
||||||
this->write16_(ATM90E32_REGISTER_UGAINB, this->phase_[1].volt_gain_); // B Voltage rms gain
|
this->write16_(ATM90E32_REGISTER_UOFFSETA, this->phase_[PHASEA].voltage_offset_); // A Voltage offset
|
||||||
this->write16_(ATM90E32_REGISTER_IGAINB, this->phase_[1].ct_gain_); // B line current gain
|
this->phase_[PHASEA].current_offset_ = calibrate_current_offset_phase(PHASEA);
|
||||||
this->write16_(ATM90E32_REGISTER_UGAINC, this->phase_[2].volt_gain_); // C Voltage rms gain
|
this->write16_(ATM90E32_REGISTER_IOFFSETA, this->phase_[PHASEA].current_offset_); // A Current offset
|
||||||
this->write16_(ATM90E32_REGISTER_IGAINC, this->phase_[2].ct_gain_); // C line current gain
|
// Setup voltage and current gain for PHASE A
|
||||||
|
this->write16_(ATM90E32_REGISTER_UGAINA, this->phase_[PHASEA].voltage_gain_); // A Voltage rms gain
|
||||||
|
this->write16_(ATM90E32_REGISTER_IGAINA, this->phase_[PHASEA].ct_gain_); // A line current gain
|
||||||
|
// Setup voltage and current calibration offsets for PHASE B
|
||||||
|
this->phase_[PHASEB].voltage_offset_ = calibrate_voltage_offset_phase(PHASEB);
|
||||||
|
this->write16_(ATM90E32_REGISTER_UOFFSETB, this->phase_[PHASEB].voltage_offset_); // B Voltage offset
|
||||||
|
this->phase_[PHASEB].current_offset_ = calibrate_current_offset_phase(PHASEB);
|
||||||
|
this->write16_(ATM90E32_REGISTER_IOFFSETB, this->phase_[PHASEB].current_offset_); // B Current offset
|
||||||
|
// Setup voltage and current gain for PHASE B
|
||||||
|
this->write16_(ATM90E32_REGISTER_UGAINB, this->phase_[PHASEB].voltage_gain_); // B Voltage rms gain
|
||||||
|
this->write16_(ATM90E32_REGISTER_IGAINB, this->phase_[PHASEB].ct_gain_); // B line current gain
|
||||||
|
// Setup voltage and current calibration offsets for PHASE C
|
||||||
|
this->phase_[PHASEC].voltage_offset_ = calibrate_voltage_offset_phase(PHASEC);
|
||||||
|
this->write16_(ATM90E32_REGISTER_UOFFSETC, this->phase_[PHASEC].voltage_offset_); // C Voltage offset
|
||||||
|
this->phase_[PHASEC].current_offset_ = calibrate_current_offset_phase(PHASEC);
|
||||||
|
this->write16_(ATM90E32_REGISTER_IOFFSETC, this->phase_[PHASEC].current_offset_); // C Current offset
|
||||||
|
// Setup voltage and current gain for PHASE C
|
||||||
|
this->write16_(ATM90E32_REGISTER_UGAINC, this->phase_[PHASEC].voltage_gain_); // C Voltage rms gain
|
||||||
|
this->write16_(ATM90E32_REGISTER_IGAINC, this->phase_[PHASEC].ct_gain_); // C line current gain
|
||||||
this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x0000); // end configuration
|
this->write16_(ATM90E32_REGISTER_CFGREGACCEN, 0x0000); // end configuration
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -133,43 +201,54 @@ void ATM90E32Component::dump_config() {
|
||||||
ESP_LOGE(TAG, "Communication with ATM90E32 failed!");
|
ESP_LOGE(TAG, "Communication with ATM90E32 failed!");
|
||||||
}
|
}
|
||||||
LOG_UPDATE_INTERVAL(this);
|
LOG_UPDATE_INTERVAL(this);
|
||||||
LOG_SENSOR(" ", "Voltage A", this->phase_[0].voltage_sensor_);
|
LOG_SENSOR(" ", "Voltage A", this->phase_[PHASEA].voltage_sensor_);
|
||||||
LOG_SENSOR(" ", "Current A", this->phase_[0].current_sensor_);
|
LOG_SENSOR(" ", "Current A", this->phase_[PHASEA].current_sensor_);
|
||||||
LOG_SENSOR(" ", "Power A", this->phase_[0].power_sensor_);
|
LOG_SENSOR(" ", "Power A", this->phase_[PHASEA].power_sensor_);
|
||||||
LOG_SENSOR(" ", "Reactive Power A", this->phase_[0].reactive_power_sensor_);
|
LOG_SENSOR(" ", "Reactive Power A", this->phase_[PHASEA].reactive_power_sensor_);
|
||||||
LOG_SENSOR(" ", "PF A", this->phase_[0].power_factor_sensor_);
|
LOG_SENSOR(" ", "PF A", this->phase_[PHASEA].power_factor_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Forward Energy A", this->phase_[0].forward_active_energy_sensor_);
|
LOG_SENSOR(" ", "Active Forward Energy A", this->phase_[PHASEA].forward_active_energy_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Reverse Energy A", this->phase_[0].reverse_active_energy_sensor_);
|
LOG_SENSOR(" ", "Active Reverse Energy A", this->phase_[PHASEA].reverse_active_energy_sensor_);
|
||||||
LOG_SENSOR(" ", "Voltage B", this->phase_[1].voltage_sensor_);
|
LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEA].harmonic_active_power_sensor_);
|
||||||
LOG_SENSOR(" ", "Current B", this->phase_[1].current_sensor_);
|
LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEA].phase_angle_sensor_);
|
||||||
LOG_SENSOR(" ", "Power B", this->phase_[1].power_sensor_);
|
LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEA].peak_current_sensor_);
|
||||||
LOG_SENSOR(" ", "Reactive Power B", this->phase_[1].reactive_power_sensor_);
|
LOG_SENSOR(" ", "Voltage B", this->phase_[PHASEB].voltage_sensor_);
|
||||||
LOG_SENSOR(" ", "PF B", this->phase_[1].power_factor_sensor_);
|
LOG_SENSOR(" ", "Current B", this->phase_[PHASEB].current_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Forward Energy B", this->phase_[1].forward_active_energy_sensor_);
|
LOG_SENSOR(" ", "Power B", this->phase_[PHASEB].power_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Reverse Energy B", this->phase_[1].reverse_active_energy_sensor_);
|
LOG_SENSOR(" ", "Reactive Power B", this->phase_[PHASEB].reactive_power_sensor_);
|
||||||
LOG_SENSOR(" ", "Voltage C", this->phase_[2].voltage_sensor_);
|
LOG_SENSOR(" ", "PF B", this->phase_[PHASEB].power_factor_sensor_);
|
||||||
LOG_SENSOR(" ", "Current C", this->phase_[2].current_sensor_);
|
LOG_SENSOR(" ", "Active Forward Energy B", this->phase_[PHASEB].forward_active_energy_sensor_);
|
||||||
LOG_SENSOR(" ", "Power C", this->phase_[2].power_sensor_);
|
LOG_SENSOR(" ", "Active Reverse Energy B", this->phase_[PHASEB].reverse_active_energy_sensor_);
|
||||||
LOG_SENSOR(" ", "Reactive Power C", this->phase_[2].reactive_power_sensor_);
|
LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEB].harmonic_active_power_sensor_);
|
||||||
LOG_SENSOR(" ", "PF C", this->phase_[2].power_factor_sensor_);
|
LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEB].phase_angle_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Forward Energy C", this->phase_[2].forward_active_energy_sensor_);
|
LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEB].peak_current_sensor_);
|
||||||
LOG_SENSOR(" ", "Active Reverse Energy C", this->phase_[2].reverse_active_energy_sensor_);
|
LOG_SENSOR(" ", "Voltage C", this->phase_[PHASEC].voltage_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Current C", this->phase_[PHASEC].current_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Power C", this->phase_[PHASEC].power_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Reactive Power C", this->phase_[PHASEC].reactive_power_sensor_);
|
||||||
|
LOG_SENSOR(" ", "PF C", this->phase_[PHASEC].power_factor_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Active Forward Energy C", this->phase_[PHASEC].forward_active_energy_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Active Reverse Energy C", this->phase_[PHASEC].reverse_active_energy_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Harmonic Power A", this->phase_[PHASEC].harmonic_active_power_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Phase Angle A", this->phase_[PHASEC].phase_angle_sensor_);
|
||||||
|
LOG_SENSOR(" ", "Peak Current A", this->phase_[PHASEC].peak_current_sensor_);
|
||||||
LOG_SENSOR(" ", "Frequency", this->freq_sensor_);
|
LOG_SENSOR(" ", "Frequency", this->freq_sensor_);
|
||||||
LOG_SENSOR(" ", "Chip Temp", this->chip_temperature_sensor_);
|
LOG_SENSOR(" ", "Chip Temp", this->chip_temperature_sensor_);
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_setup_priority() const { return setup_priority::DATA; }
|
|
||||||
|
|
||||||
|
float ATM90E32Component::get_setup_priority() const { return setup_priority::IO; }
|
||||||
|
|
||||||
|
// R/C registers can conly be cleared after the LastSPIData register is updated (register 78H)
|
||||||
|
// Peakdetect period: 05H. Bit 15:8 are PeakDet_period in ms. 7:0 are Sag_period
|
||||||
|
// Default is 143FH (20ms, 63ms)
|
||||||
uint16_t ATM90E32Component::read16_(uint16_t a_register) {
|
uint16_t ATM90E32Component::read16_(uint16_t a_register) {
|
||||||
uint8_t addrh = (1 << 7) | ((a_register >> 8) & 0x03);
|
uint8_t addrh = (1 << 7) | ((a_register >> 8) & 0x03);
|
||||||
uint8_t addrl = (a_register & 0xFF);
|
uint8_t addrl = (a_register & 0xFF);
|
||||||
uint8_t data[2];
|
uint8_t data[2];
|
||||||
uint16_t output;
|
uint16_t output;
|
||||||
|
|
||||||
this->enable();
|
this->enable();
|
||||||
delayMicroseconds(10);
|
delay_microseconds_safe(10);
|
||||||
this->write_byte(addrh);
|
this->write_byte(addrh);
|
||||||
this->write_byte(addrl);
|
this->write_byte(addrl);
|
||||||
delayMicroseconds(4);
|
|
||||||
this->read_array(data, 2);
|
this->read_array(data, 2);
|
||||||
this->disable();
|
this->disable();
|
||||||
|
|
||||||
|
@ -179,9 +258,9 @@ uint16_t ATM90E32Component::read16_(uint16_t a_register) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int ATM90E32Component::read32_(uint16_t addr_h, uint16_t addr_l) {
|
int ATM90E32Component::read32_(uint16_t addr_h, uint16_t addr_l) {
|
||||||
uint16_t val_h = this->read16_(addr_h);
|
const uint16_t val_h = this->read16_(addr_h);
|
||||||
uint16_t val_l = this->read16_(addr_l);
|
const uint16_t val_l = this->read16_(addr_l);
|
||||||
int32_t val = (val_h << 16) | val_l;
|
const int32_t val = (val_h << 16) | val_l;
|
||||||
|
|
||||||
ESP_LOGVV(TAG,
|
ESP_LOGVV(TAG,
|
||||||
"read32_ addr_h 0x%04" PRIX16 " val_h 0x%04" PRIX16 " addr_l 0x%04" PRIX16 " val_l 0x%04" PRIX16
|
"read32_ addr_h 0x%04" PRIX16 " val_h 0x%04" PRIX16 " addr_l 0x%04" PRIX16 " val_l 0x%04" PRIX16
|
||||||
|
@ -192,141 +271,174 @@ int ATM90E32Component::read32_(uint16_t addr_h, uint16_t addr_l) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void ATM90E32Component::write16_(uint16_t a_register, uint16_t val) {
|
void ATM90E32Component::write16_(uint16_t a_register, uint16_t val) {
|
||||||
uint8_t addrh = (a_register >> 8) & 0x03;
|
|
||||||
uint8_t addrl = (a_register & 0xFF);
|
|
||||||
|
|
||||||
ESP_LOGVV(TAG, "write16_ 0x%04" PRIX16 " val 0x%04" PRIX16, a_register, val);
|
ESP_LOGVV(TAG, "write16_ 0x%04" PRIX16 " val 0x%04" PRIX16, a_register, val);
|
||||||
this->enable();
|
this->enable();
|
||||||
delayMicroseconds(10);
|
this->write_byte16(a_register);
|
||||||
this->write_byte(addrh);
|
this->write_byte16(val);
|
||||||
this->write_byte(addrl);
|
|
||||||
delayMicroseconds(4);
|
|
||||||
this->write_byte((val >> 8) & 0xff);
|
|
||||||
this->write_byte(val & 0xFF);
|
|
||||||
this->disable();
|
this->disable();
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != val)
|
||||||
|
ESP_LOGW(TAG, "SPI write error 0x%04X val 0x%04X", a_register, val);
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E32Component::get_line_voltage_a_() {
|
float ATM90E32Component::get_local_phase_voltage_(uint8_t phase) { return this->phase_[phase].voltage_; }
|
||||||
uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSA);
|
|
||||||
|
float ATM90E32Component::get_local_phase_current_(uint8_t phase) { return this->phase_[phase].current_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_active_power_(uint8_t phase) { return this->phase_[phase].active_power_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_reactive_power_(uint8_t phase) { return this->phase_[phase].reactive_power_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_power_factor_(uint8_t phase) { return this->phase_[phase].power_factor_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_forward_active_energy_(uint8_t phase) {
|
||||||
|
return this->phase_[phase].forward_active_energy_;
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_reverse_active_energy_(uint8_t phase) {
|
||||||
|
return this->phase_[phase].reverse_active_energy_;
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_angle_(uint8_t phase) { return this->phase_[phase].phase_angle_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_harmonic_active_power_(uint8_t phase) {
|
||||||
|
return this->phase_[phase].harmonic_active_power_;
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_local_phase_peak_current_(uint8_t phase) { return this->phase_[phase].peak_current_; }
|
||||||
|
|
||||||
|
float ATM90E32Component::get_phase_voltage_(uint8_t phase) {
|
||||||
|
const uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMS + phase);
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != voltage)
|
||||||
|
ESP_LOGW(TAG, "SPI URMS voltage register read error.");
|
||||||
return (float) voltage / 100;
|
return (float) voltage / 100;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_line_voltage_b_() {
|
|
||||||
uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSB);
|
float ATM90E32Component::get_phase_voltage_avg_(uint8_t phase) {
|
||||||
return (float) voltage / 100;
|
const uint8_t reads = 10;
|
||||||
|
uint32_t accumulation = 0;
|
||||||
|
uint16_t voltage = 0;
|
||||||
|
for (uint8_t i = 0; i < reads; i++) {
|
||||||
|
voltage = this->read16_(ATM90E32_REGISTER_URMS + phase);
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != voltage)
|
||||||
|
ESP_LOGW(TAG, "SPI URMS voltage register read error.");
|
||||||
|
accumulation += voltage;
|
||||||
|
}
|
||||||
|
voltage = accumulation / reads;
|
||||||
|
this->phase_[phase].voltage_ = (float) voltage / 100;
|
||||||
|
return this->phase_[phase].voltage_;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_line_voltage_c_() {
|
|
||||||
uint16_t voltage = this->read16_(ATM90E32_REGISTER_URMSC);
|
float ATM90E32Component::get_phase_current_avg_(uint8_t phase) {
|
||||||
return (float) voltage / 100;
|
const uint8_t reads = 10;
|
||||||
|
uint32_t accumulation = 0;
|
||||||
|
uint16_t current = 0;
|
||||||
|
for (uint8_t i = 0; i < reads; i++) {
|
||||||
|
current = this->read16_(ATM90E32_REGISTER_IRMS + phase);
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != current)
|
||||||
|
ESP_LOGW(TAG, "SPI IRMS current register read error.");
|
||||||
|
accumulation += current;
|
||||||
|
}
|
||||||
|
current = accumulation / reads;
|
||||||
|
this->phase_[phase].current_ = (float) current / 1000;
|
||||||
|
return this->phase_[phase].current_;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_line_current_a_() {
|
|
||||||
uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSA);
|
float ATM90E32Component::get_phase_current_(uint8_t phase) {
|
||||||
|
const uint16_t current = this->read16_(ATM90E32_REGISTER_IRMS + phase);
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != current)
|
||||||
|
ESP_LOGW(TAG, "SPI IRMS current register read error.");
|
||||||
return (float) current / 1000;
|
return (float) current / 1000;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_line_current_b_() {
|
|
||||||
uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSB);
|
float ATM90E32Component::get_phase_active_power_(uint8_t phase) {
|
||||||
return (float) current / 1000;
|
const int val = this->read32_(ATM90E32_REGISTER_PMEAN + phase, ATM90E32_REGISTER_PMEANLSB + phase);
|
||||||
}
|
|
||||||
float ATM90E32Component::get_line_current_c_() {
|
|
||||||
uint16_t current = this->read16_(ATM90E32_REGISTER_IRMSC);
|
|
||||||
return (float) current / 1000;
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_active_power_a_() {
|
|
||||||
int val = this->read32_(ATM90E32_REGISTER_PMEANA, ATM90E32_REGISTER_PMEANALSB);
|
|
||||||
return val * 0.00032f;
|
return val * 0.00032f;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_active_power_b_() {
|
|
||||||
int val = this->read32_(ATM90E32_REGISTER_PMEANB, ATM90E32_REGISTER_PMEANBLSB);
|
float ATM90E32Component::get_phase_reactive_power_(uint8_t phase) {
|
||||||
|
const int val = this->read32_(ATM90E32_REGISTER_QMEAN + phase, ATM90E32_REGISTER_QMEANLSB + phase);
|
||||||
return val * 0.00032f;
|
return val * 0.00032f;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_active_power_c_() {
|
|
||||||
int val = this->read32_(ATM90E32_REGISTER_PMEANC, ATM90E32_REGISTER_PMEANCLSB);
|
float ATM90E32Component::get_phase_power_factor_(uint8_t phase) {
|
||||||
|
const int16_t powerfactor = this->read16_(ATM90E32_REGISTER_PFMEAN + phase);
|
||||||
|
if (this->read16_(ATM90E32_REGISTER_LASTSPIDATA) != powerfactor)
|
||||||
|
ESP_LOGW(TAG, "SPI power factor read error.");
|
||||||
|
return (float) powerfactor / 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_phase_forward_active_energy_(uint8_t phase) {
|
||||||
|
const uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGY + phase);
|
||||||
|
if ((UINT32_MAX - this->phase_[phase].cumulative_forward_active_energy_) > val) {
|
||||||
|
this->phase_[phase].cumulative_forward_active_energy_ += val;
|
||||||
|
} else {
|
||||||
|
this->phase_[phase].cumulative_forward_active_energy_ = val;
|
||||||
|
}
|
||||||
|
return ((float) this->phase_[phase].cumulative_forward_active_energy_ * 10 / 3200);
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_phase_reverse_active_energy_(uint8_t phase) {
|
||||||
|
const uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGY);
|
||||||
|
if (UINT32_MAX - this->phase_[phase].cumulative_reverse_active_energy_ > val) {
|
||||||
|
this->phase_[phase].cumulative_reverse_active_energy_ += val;
|
||||||
|
} else {
|
||||||
|
this->phase_[phase].cumulative_reverse_active_energy_ = val;
|
||||||
|
}
|
||||||
|
return ((float) this->phase_[phase].cumulative_reverse_active_energy_ * 10 / 3200);
|
||||||
|
}
|
||||||
|
|
||||||
|
float ATM90E32Component::get_phase_harmonic_active_power_(uint8_t phase) {
|
||||||
|
int val = this->read32_(ATM90E32_REGISTER_PMEANH + phase, ATM90E32_REGISTER_PMEANHLSB + phase);
|
||||||
return val * 0.00032f;
|
return val * 0.00032f;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_reactive_power_a_() {
|
|
||||||
int val = this->read32_(ATM90E32_REGISTER_QMEANA, ATM90E32_REGISTER_QMEANALSB);
|
float ATM90E32Component::get_phase_angle_(uint8_t phase) {
|
||||||
return val * 0.00032f;
|
uint16_t val = this->read16_(ATM90E32_REGISTER_PANGLE + phase) / 10.0;
|
||||||
|
return (float) (val > 180) ? val - 360.0 : val;
|
||||||
}
|
}
|
||||||
float ATM90E32Component::get_reactive_power_b_() {
|
|
||||||
int val = this->read32_(ATM90E32_REGISTER_QMEANB, ATM90E32_REGISTER_QMEANBLSB);
|
float ATM90E32Component::get_phase_peak_current_(uint8_t phase) {
|
||||||
return val * 0.00032f;
|
int16_t val = (float) this->read16_(ATM90E32_REGISTER_IPEAK + phase);
|
||||||
}
|
if (!this->peak_current_signed_)
|
||||||
float ATM90E32Component::get_reactive_power_c_() {
|
val = abs(val);
|
||||||
int val = this->read32_(ATM90E32_REGISTER_QMEANC, ATM90E32_REGISTER_QMEANCLSB);
|
// phase register * phase current gain value / 1000 * 2^13
|
||||||
return val * 0.00032f;
|
return (float) (val * this->phase_[phase].ct_gain_ / 8192000.0);
|
||||||
}
|
|
||||||
float ATM90E32Component::get_power_factor_a_() {
|
|
||||||
int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANA);
|
|
||||||
return (float) pf / 1000;
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_power_factor_b_() {
|
|
||||||
int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANB);
|
|
||||||
return (float) pf / 1000;
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_power_factor_c_() {
|
|
||||||
int16_t pf = this->read16_(ATM90E32_REGISTER_PFMEANC);
|
|
||||||
return (float) pf / 1000;
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_forward_active_energy_a_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYA);
|
|
||||||
if ((UINT32_MAX - this->phase_[0].cumulative_forward_active_energy_) > val) {
|
|
||||||
this->phase_[0].cumulative_forward_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[0].cumulative_forward_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[0].cumulative_forward_active_energy_ * 10 / 3200);
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_forward_active_energy_b_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYB);
|
|
||||||
if (UINT32_MAX - this->phase_[1].cumulative_forward_active_energy_ > val) {
|
|
||||||
this->phase_[1].cumulative_forward_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[1].cumulative_forward_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[1].cumulative_forward_active_energy_ * 10 / 3200);
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_forward_active_energy_c_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_APENERGYC);
|
|
||||||
if (UINT32_MAX - this->phase_[2].cumulative_forward_active_energy_ > val) {
|
|
||||||
this->phase_[2].cumulative_forward_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[2].cumulative_forward_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[2].cumulative_forward_active_energy_ * 10 / 3200);
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_reverse_active_energy_a_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYA);
|
|
||||||
if (UINT32_MAX - this->phase_[0].cumulative_reverse_active_energy_ > val) {
|
|
||||||
this->phase_[0].cumulative_reverse_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[0].cumulative_reverse_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[0].cumulative_reverse_active_energy_ * 10 / 3200);
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_reverse_active_energy_b_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYB);
|
|
||||||
if (UINT32_MAX - this->phase_[1].cumulative_reverse_active_energy_ > val) {
|
|
||||||
this->phase_[1].cumulative_reverse_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[1].cumulative_reverse_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[1].cumulative_reverse_active_energy_ * 10 / 3200);
|
|
||||||
}
|
|
||||||
float ATM90E32Component::get_reverse_active_energy_c_() {
|
|
||||||
uint16_t val = this->read16_(ATM90E32_REGISTER_ANENERGYC);
|
|
||||||
if (UINT32_MAX - this->phase_[2].cumulative_reverse_active_energy_ > val) {
|
|
||||||
this->phase_[2].cumulative_reverse_active_energy_ += val;
|
|
||||||
} else {
|
|
||||||
this->phase_[2].cumulative_reverse_active_energy_ = val;
|
|
||||||
}
|
|
||||||
return ((float) this->phase_[2].cumulative_reverse_active_energy_ * 10 / 3200);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E32Component::get_frequency_() {
|
float ATM90E32Component::get_frequency_() {
|
||||||
uint16_t freq = this->read16_(ATM90E32_REGISTER_FREQ);
|
const uint16_t freq = this->read16_(ATM90E32_REGISTER_FREQ);
|
||||||
return (float) freq / 100;
|
return (float) freq / 100;
|
||||||
}
|
}
|
||||||
|
|
||||||
float ATM90E32Component::get_chip_temperature_() {
|
float ATM90E32Component::get_chip_temperature_() {
|
||||||
uint16_t ctemp = this->read16_(ATM90E32_REGISTER_TEMP);
|
const uint16_t ctemp = this->read16_(ATM90E32_REGISTER_TEMP);
|
||||||
return (float) ctemp;
|
return (float) ctemp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
uint16_t ATM90E32Component::calibrate_voltage_offset_phase(uint8_t phase) {
|
||||||
|
const uint8_t num_reads = 5;
|
||||||
|
uint64_t total_value = 0;
|
||||||
|
for (int i = 0; i < num_reads; ++i) {
|
||||||
|
const uint32_t measurement_value = read32_(ATM90E32_REGISTER_URMS + phase, ATM90E32_REGISTER_URMSLSB + phase);
|
||||||
|
total_value += measurement_value;
|
||||||
|
}
|
||||||
|
const uint32_t average_value = total_value / num_reads;
|
||||||
|
const uint32_t shifted_value = average_value >> 7;
|
||||||
|
const uint32_t voltage_offset = ~shifted_value + 1;
|
||||||
|
return voltage_offset & 0xFFFF; // Take the lower 16 bits
|
||||||
|
}
|
||||||
|
|
||||||
|
uint16_t ATM90E32Component::calibrate_current_offset_phase(uint8_t phase) {
|
||||||
|
const uint8_t num_reads = 5;
|
||||||
|
uint64_t total_value = 0;
|
||||||
|
for (int i = 0; i < num_reads; ++i) {
|
||||||
|
const uint32_t measurement_value = read32_(ATM90E32_REGISTER_IRMS + phase, ATM90E32_REGISTER_IRMSLSB + phase);
|
||||||
|
total_value += measurement_value;
|
||||||
|
}
|
||||||
|
const uint32_t average_value = total_value / num_reads;
|
||||||
|
const uint32_t current_offset = ~average_value + 1;
|
||||||
|
return current_offset & 0xFFFF; // Take the lower 16 bits
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace atm90e32
|
} // namespace atm90e32
|
||||||
} // namespace esphome
|
} // namespace esphome
|
||||||
|
|
|
@ -3,14 +3,19 @@
|
||||||
#include "esphome/core/component.h"
|
#include "esphome/core/component.h"
|
||||||
#include "esphome/components/sensor/sensor.h"
|
#include "esphome/components/sensor/sensor.h"
|
||||||
#include "esphome/components/spi/spi.h"
|
#include "esphome/components/spi/spi.h"
|
||||||
|
#include "atm90e32_reg.h"
|
||||||
|
|
||||||
namespace esphome {
|
namespace esphome {
|
||||||
namespace atm90e32 {
|
namespace atm90e32 {
|
||||||
|
|
||||||
class ATM90E32Component : public PollingComponent,
|
class ATM90E32Component : public PollingComponent,
|
||||||
public spi::SPIDevice<spi::BIT_ORDER_MSB_FIRST, spi::CLOCK_POLARITY_HIGH,
|
public spi::SPIDevice<spi::BIT_ORDER_MSB_FIRST, spi::CLOCK_POLARITY_HIGH,
|
||||||
spi::CLOCK_PHASE_TRAILING, spi::DATA_RATE_200KHZ> {
|
spi::CLOCK_PHASE_TRAILING, spi::DATA_RATE_1MHZ> {
|
||||||
public:
|
public:
|
||||||
|
static const uint8_t PHASEA = 0;
|
||||||
|
static const uint8_t PHASEB = 1;
|
||||||
|
static const uint8_t PHASEC = 2;
|
||||||
|
void loop() override;
|
||||||
void setup() override;
|
void setup() override;
|
||||||
void dump_config() override;
|
void dump_config() override;
|
||||||
float get_setup_priority() const override;
|
float get_setup_priority() const override;
|
||||||
|
@ -20,6 +25,7 @@ class ATM90E32Component : public PollingComponent,
|
||||||
void set_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].current_sensor_ = obj; }
|
void set_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].current_sensor_ = obj; }
|
||||||
void set_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_sensor_ = obj; }
|
void set_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_sensor_ = obj; }
|
||||||
void set_reactive_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].reactive_power_sensor_ = obj; }
|
void set_reactive_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].reactive_power_sensor_ = obj; }
|
||||||
|
void set_apparent_power_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].apparent_power_sensor_ = obj; }
|
||||||
void set_forward_active_energy_sensor(int phase, sensor::Sensor *obj) {
|
void set_forward_active_energy_sensor(int phase, sensor::Sensor *obj) {
|
||||||
this->phase_[phase].forward_active_energy_sensor_ = obj;
|
this->phase_[phase].forward_active_energy_sensor_ = obj;
|
||||||
}
|
}
|
||||||
|
@ -27,64 +33,94 @@ class ATM90E32Component : public PollingComponent,
|
||||||
this->phase_[phase].reverse_active_energy_sensor_ = obj;
|
this->phase_[phase].reverse_active_energy_sensor_ = obj;
|
||||||
}
|
}
|
||||||
void set_power_factor_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_factor_sensor_ = obj; }
|
void set_power_factor_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].power_factor_sensor_ = obj; }
|
||||||
void set_volt_gain(int phase, uint16_t gain) { this->phase_[phase].volt_gain_ = gain; }
|
void set_phase_angle_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].phase_angle_sensor_ = obj; }
|
||||||
|
void set_harmonic_active_power_sensor(int phase, sensor::Sensor *obj) {
|
||||||
|
this->phase_[phase].harmonic_active_power_sensor_ = obj;
|
||||||
|
}
|
||||||
|
void set_peak_current_sensor(int phase, sensor::Sensor *obj) { this->phase_[phase].peak_current_sensor_ = obj; }
|
||||||
|
void set_volt_gain(int phase, uint16_t gain) { this->phase_[phase].voltage_gain_ = gain; }
|
||||||
void set_ct_gain(int phase, uint16_t gain) { this->phase_[phase].ct_gain_ = gain; }
|
void set_ct_gain(int phase, uint16_t gain) { this->phase_[phase].ct_gain_ = gain; }
|
||||||
|
|
||||||
void set_freq_sensor(sensor::Sensor *freq_sensor) { freq_sensor_ = freq_sensor; }
|
void set_freq_sensor(sensor::Sensor *freq_sensor) { freq_sensor_ = freq_sensor; }
|
||||||
|
void set_peak_current_signed(bool flag) { peak_current_signed_ = flag; }
|
||||||
void set_chip_temperature_sensor(sensor::Sensor *chip_temperature_sensor) {
|
void set_chip_temperature_sensor(sensor::Sensor *chip_temperature_sensor) {
|
||||||
chip_temperature_sensor_ = chip_temperature_sensor;
|
chip_temperature_sensor_ = chip_temperature_sensor;
|
||||||
}
|
}
|
||||||
void set_line_freq(int freq) { line_freq_ = freq; }
|
void set_line_freq(int freq) { line_freq_ = freq; }
|
||||||
void set_current_phases(int phases) { current_phases_ = phases; }
|
void set_current_phases(int phases) { current_phases_ = phases; }
|
||||||
void set_pga_gain(uint16_t gain) { pga_gain_ = gain; }
|
void set_pga_gain(uint16_t gain) { pga_gain_ = gain; }
|
||||||
|
uint16_t calibrate_voltage_offset_phase(uint8_t /*phase*/);
|
||||||
|
uint16_t calibrate_current_offset_phase(uint8_t /*phase*/);
|
||||||
|
|
||||||
|
int32_t last_periodic_millis = millis();
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
uint16_t read16_(uint16_t a_register);
|
uint16_t read16_(uint16_t a_register);
|
||||||
int read32_(uint16_t addr_h, uint16_t addr_l);
|
int read32_(uint16_t addr_h, uint16_t addr_l);
|
||||||
void write16_(uint16_t a_register, uint16_t val);
|
void write16_(uint16_t a_register, uint16_t val);
|
||||||
|
float get_local_phase_voltage_(uint8_t /*phase*/);
|
||||||
float get_line_voltage_a_();
|
float get_local_phase_current_(uint8_t /*phase*/);
|
||||||
float get_line_voltage_b_();
|
float get_local_phase_active_power_(uint8_t /*phase*/);
|
||||||
float get_line_voltage_c_();
|
float get_local_phase_reactive_power_(uint8_t /*phase*/);
|
||||||
float get_line_current_a_();
|
float get_local_phase_power_factor_(uint8_t /*phase*/);
|
||||||
float get_line_current_b_();
|
float get_local_phase_forward_active_energy_(uint8_t /*phase*/);
|
||||||
float get_line_current_c_();
|
float get_local_phase_reverse_active_energy_(uint8_t /*phase*/);
|
||||||
float get_active_power_a_();
|
float get_local_phase_angle_(uint8_t /*phase*/);
|
||||||
float get_active_power_b_();
|
float get_local_phase_harmonic_active_power_(uint8_t /*phase*/);
|
||||||
float get_active_power_c_();
|
float get_local_phase_peak_current_(uint8_t /*phase*/);
|
||||||
float get_reactive_power_a_();
|
float get_phase_voltage_(uint8_t /*phase*/);
|
||||||
float get_reactive_power_b_();
|
float get_phase_voltage_avg_(uint8_t /*phase*/);
|
||||||
float get_reactive_power_c_();
|
float get_phase_current_(uint8_t /*phase*/);
|
||||||
float get_power_factor_a_();
|
float get_phase_current_avg_(uint8_t /*phase*/);
|
||||||
float get_power_factor_b_();
|
float get_phase_active_power_(uint8_t /*phase*/);
|
||||||
float get_power_factor_c_();
|
float get_phase_reactive_power_(uint8_t /*phase*/);
|
||||||
float get_forward_active_energy_a_();
|
float get_phase_power_factor_(uint8_t /*phase*/);
|
||||||
float get_forward_active_energy_b_();
|
float get_phase_forward_active_energy_(uint8_t /*phase*/);
|
||||||
float get_forward_active_energy_c_();
|
float get_phase_reverse_active_energy_(uint8_t /*phase*/);
|
||||||
float get_reverse_active_energy_a_();
|
float get_phase_angle_(uint8_t /*phase*/);
|
||||||
float get_reverse_active_energy_b_();
|
float get_phase_harmonic_active_power_(uint8_t /*phase*/);
|
||||||
float get_reverse_active_energy_c_();
|
float get_phase_peak_current_(uint8_t /*phase*/);
|
||||||
float get_frequency_();
|
float get_frequency_();
|
||||||
float get_chip_temperature_();
|
float get_chip_temperature_();
|
||||||
|
bool get_publish_interval_flag_() { return publish_interval_flag_; };
|
||||||
|
void set_publish_interval_flag_(bool flag) { publish_interval_flag_ = flag; };
|
||||||
|
|
||||||
struct ATM90E32Phase {
|
struct ATM90E32Phase {
|
||||||
uint16_t volt_gain_{7305};
|
uint16_t voltage_gain_{7305};
|
||||||
uint16_t ct_gain_{27961};
|
uint16_t ct_gain_{27961};
|
||||||
|
uint16_t voltage_offset_{0};
|
||||||
|
uint16_t current_offset_{0};
|
||||||
|
float voltage_{0};
|
||||||
|
float current_{0};
|
||||||
|
float active_power_{0};
|
||||||
|
float reactive_power_{0};
|
||||||
|
float power_factor_{0};
|
||||||
|
float forward_active_energy_{0};
|
||||||
|
float reverse_active_energy_{0};
|
||||||
|
float phase_angle_{0};
|
||||||
|
float harmonic_active_power_{0};
|
||||||
|
float peak_current_{0};
|
||||||
sensor::Sensor *voltage_sensor_{nullptr};
|
sensor::Sensor *voltage_sensor_{nullptr};
|
||||||
sensor::Sensor *current_sensor_{nullptr};
|
sensor::Sensor *current_sensor_{nullptr};
|
||||||
sensor::Sensor *power_sensor_{nullptr};
|
sensor::Sensor *power_sensor_{nullptr};
|
||||||
sensor::Sensor *reactive_power_sensor_{nullptr};
|
sensor::Sensor *reactive_power_sensor_{nullptr};
|
||||||
|
sensor::Sensor *apparent_power_sensor_{nullptr};
|
||||||
sensor::Sensor *power_factor_sensor_{nullptr};
|
sensor::Sensor *power_factor_sensor_{nullptr};
|
||||||
sensor::Sensor *forward_active_energy_sensor_{nullptr};
|
sensor::Sensor *forward_active_energy_sensor_{nullptr};
|
||||||
sensor::Sensor *reverse_active_energy_sensor_{nullptr};
|
sensor::Sensor *reverse_active_energy_sensor_{nullptr};
|
||||||
|
sensor::Sensor *phase_angle_sensor_{nullptr};
|
||||||
|
sensor::Sensor *harmonic_active_power_sensor_{nullptr};
|
||||||
|
sensor::Sensor *peak_current_sensor_{nullptr};
|
||||||
uint32_t cumulative_forward_active_energy_{0};
|
uint32_t cumulative_forward_active_energy_{0};
|
||||||
uint32_t cumulative_reverse_active_energy_{0};
|
uint32_t cumulative_reverse_active_energy_{0};
|
||||||
} phase_[3];
|
} phase_[3];
|
||||||
|
|
||||||
sensor::Sensor *freq_sensor_{nullptr};
|
sensor::Sensor *freq_sensor_{nullptr};
|
||||||
sensor::Sensor *chip_temperature_sensor_{nullptr};
|
sensor::Sensor *chip_temperature_sensor_{nullptr};
|
||||||
uint16_t pga_gain_{0x15};
|
uint16_t pga_gain_{0x15};
|
||||||
int line_freq_{60};
|
int line_freq_{60};
|
||||||
int current_phases_{3};
|
int current_phases_{3};
|
||||||
|
bool publish_interval_flag_{true};
|
||||||
|
bool peak_current_signed_{false};
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace atm90e32
|
} // namespace atm90e32
|
||||||
|
|
|
@ -131,10 +131,12 @@ static const uint16_t ATM90E32_REGISTER_IOFFSETN = 0x6E; // N Current Offset
|
||||||
|
|
||||||
/* ENERGY REGISTERS */
|
/* ENERGY REGISTERS */
|
||||||
static const uint16_t ATM90E32_REGISTER_APENERGYT = 0x80; // Total Forward Active
|
static const uint16_t ATM90E32_REGISTER_APENERGYT = 0x80; // Total Forward Active
|
||||||
|
static const uint16_t ATM90E32_REGISTER_APENERGY = 0x81; // Forward Active Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_APENERGYA = 0x81; // A Forward Active
|
static const uint16_t ATM90E32_REGISTER_APENERGYA = 0x81; // A Forward Active
|
||||||
static const uint16_t ATM90E32_REGISTER_APENERGYB = 0x82; // B Forward Active
|
static const uint16_t ATM90E32_REGISTER_APENERGYB = 0x82; // B Forward Active
|
||||||
static const uint16_t ATM90E32_REGISTER_APENERGYC = 0x83; // C Forward Active
|
static const uint16_t ATM90E32_REGISTER_APENERGYC = 0x83; // C Forward Active
|
||||||
static const uint16_t ATM90E32_REGISTER_ANENERGYT = 0x84; // Total Reverse Active
|
static const uint16_t ATM90E32_REGISTER_ANENERGYT = 0x84; // Total Reverse Active
|
||||||
|
static const uint16_t ATM90E32_REGISTER_ANENERGY = 0x85; // Reverse Active Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_ANENERGYA = 0x85; // A Reverse Active
|
static const uint16_t ATM90E32_REGISTER_ANENERGYA = 0x85; // A Reverse Active
|
||||||
static const uint16_t ATM90E32_REGISTER_ANENERGYB = 0x86; // B Reverse Active
|
static const uint16_t ATM90E32_REGISTER_ANENERGYB = 0x86; // B Reverse Active
|
||||||
static const uint16_t ATM90E32_REGISTER_ANENERGYC = 0x87; // C Reverse Active
|
static const uint16_t ATM90E32_REGISTER_ANENERGYC = 0x87; // C Reverse Active
|
||||||
|
@ -172,10 +174,12 @@ static const uint16_t ATM90E32_REGISTER_ANENERGYCH = 0xAF; // C Reverse Harm. E
|
||||||
|
|
||||||
/* POWER & P.F. REGISTERS */
|
/* POWER & P.F. REGISTERS */
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANT = 0xB0; // Total Mean Power (P)
|
static const uint16_t ATM90E32_REGISTER_PMEANT = 0xB0; // Total Mean Power (P)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PMEAN = 0xB1; // Mean Power Reg Base (P)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANA = 0xB1; // A Mean Power (P)
|
static const uint16_t ATM90E32_REGISTER_PMEANA = 0xB1; // A Mean Power (P)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANB = 0xB2; // B Mean Power (P)
|
static const uint16_t ATM90E32_REGISTER_PMEANB = 0xB2; // B Mean Power (P)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANC = 0xB3; // C Mean Power (P)
|
static const uint16_t ATM90E32_REGISTER_PMEANC = 0xB3; // C Mean Power (P)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANT = 0xB4; // Total Mean Power (Q)
|
static const uint16_t ATM90E32_REGISTER_QMEANT = 0xB4; // Total Mean Power (Q)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_QMEAN = 0xB5; // Mean Power Reg Base (Q)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANA = 0xB5; // A Mean Power (Q)
|
static const uint16_t ATM90E32_REGISTER_QMEANA = 0xB5; // A Mean Power (Q)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANB = 0xB6; // B Mean Power (Q)
|
static const uint16_t ATM90E32_REGISTER_QMEANB = 0xB6; // B Mean Power (Q)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANC = 0xB7; // C Mean Power (Q)
|
static const uint16_t ATM90E32_REGISTER_QMEANC = 0xB7; // C Mean Power (Q)
|
||||||
|
@ -184,15 +188,18 @@ static const uint16_t ATM90E32_REGISTER_SMEANA = 0xB9; // A Mean Power (S)
|
||||||
static const uint16_t ATM90E32_REGISTER_SMEANB = 0xBA; // B Mean Power (S)
|
static const uint16_t ATM90E32_REGISTER_SMEANB = 0xBA; // B Mean Power (S)
|
||||||
static const uint16_t ATM90E32_REGISTER_SMEANC = 0xBB; // C Mean Power (S)
|
static const uint16_t ATM90E32_REGISTER_SMEANC = 0xBB; // C Mean Power (S)
|
||||||
static const uint16_t ATM90E32_REGISTER_PFMEANT = 0xBC; // Mean Power Factor
|
static const uint16_t ATM90E32_REGISTER_PFMEANT = 0xBC; // Mean Power Factor
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PFMEAN = 0xBD; // Power Factor Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_PFMEANA = 0xBD; // A Power Factor
|
static const uint16_t ATM90E32_REGISTER_PFMEANA = 0xBD; // A Power Factor
|
||||||
static const uint16_t ATM90E32_REGISTER_PFMEANB = 0xBE; // B Power Factor
|
static const uint16_t ATM90E32_REGISTER_PFMEANB = 0xBE; // B Power Factor
|
||||||
static const uint16_t ATM90E32_REGISTER_PFMEANC = 0xBF; // C Power Factor
|
static const uint16_t ATM90E32_REGISTER_PFMEANC = 0xBF; // C Power Factor
|
||||||
|
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANTLSB = 0xC0; // Lower Word (Tot. Act. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANTLSB = 0xC0; // Lower Word (Tot. Act. Power)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PMEANLSB = 0xC1; // Lower Word Reg Base (Active Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANALSB = 0xC1; // Lower Word (A Act. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANALSB = 0xC1; // Lower Word (A Act. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANBLSB = 0xC2; // Lower Word (B Act. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANBLSB = 0xC2; // Lower Word (B Act. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANCLSB = 0xC3; // Lower Word (C Act. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANCLSB = 0xC3; // Lower Word (C Act. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANTLSB = 0xC4; // Lower Word (Tot. React. Power)
|
static const uint16_t ATM90E32_REGISTER_QMEANTLSB = 0xC4; // Lower Word (Tot. React. Power)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_QMEANLSB = 0xC5; // Lower Word Reg Base (Reactive Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANALSB = 0xC5; // Lower Word (A React. Power)
|
static const uint16_t ATM90E32_REGISTER_QMEANALSB = 0xC5; // Lower Word (A React. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANBLSB = 0xC6; // Lower Word (B React. Power)
|
static const uint16_t ATM90E32_REGISTER_QMEANBLSB = 0xC6; // Lower Word (B React. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_QMEANCLSB = 0xC7; // Lower Word (C React. Power)
|
static const uint16_t ATM90E32_REGISTER_QMEANCLSB = 0xC7; // Lower Word (C React. Power)
|
||||||
|
@ -207,12 +214,15 @@ static const uint16_t ATM90E32_REGISTER_PMEANAF = 0xD1; // A Active Fund. Power
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANBF = 0xD2; // B Active Fund. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANBF = 0xD2; // B Active Fund. Power
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANCF = 0xD3; // C Active Fund. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANCF = 0xD3; // C Active Fund. Power
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANTH = 0xD4; // Total Active Harm. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANTH = 0xD4; // Total Active Harm. Power
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PMEANH = 0xD5; // Active Harm. Power Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANAH = 0xD5; // A Active Harm. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANAH = 0xD5; // A Active Harm. Power
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANBH = 0xD6; // B Active Harm. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANBH = 0xD6; // B Active Harm. Power
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANCH = 0xD7; // C Active Harm. Power
|
static const uint16_t ATM90E32_REGISTER_PMEANCH = 0xD7; // C Active Harm. Power
|
||||||
|
static const uint16_t ATM90E32_REGISTER_URMS = 0xD9; // RMS Voltage Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSA = 0xD9; // A RMS Voltage
|
static const uint16_t ATM90E32_REGISTER_URMSA = 0xD9; // A RMS Voltage
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSB = 0xDA; // B RMS Voltage
|
static const uint16_t ATM90E32_REGISTER_URMSB = 0xDA; // B RMS Voltage
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSC = 0xDB; // C RMS Voltage
|
static const uint16_t ATM90E32_REGISTER_URMSC = 0xDB; // C RMS Voltage
|
||||||
|
static const uint16_t ATM90E32_REGISTER_IRMS = 0xDD; // RMS Current Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSA = 0xDD; // A RMS Current
|
static const uint16_t ATM90E32_REGISTER_IRMSA = 0xDD; // A RMS Current
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSB = 0xDE; // B RMS Current
|
static const uint16_t ATM90E32_REGISTER_IRMSB = 0xDE; // B RMS Current
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSC = 0xDF; // C RMS Current
|
static const uint16_t ATM90E32_REGISTER_IRMSC = 0xDF; // C RMS Current
|
||||||
|
@ -223,12 +233,15 @@ static const uint16_t ATM90E32_REGISTER_PMEANAFLSB = 0xE1; // Lower Word (A Act
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANBFLSB = 0xE2; // Lower Word (B Act. Fund. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANBFLSB = 0xE2; // Lower Word (B Act. Fund. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANCFLSB = 0xE3; // Lower Word (C Act. Fund. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANCFLSB = 0xE3; // Lower Word (C Act. Fund. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANTHLSB = 0xE4; // Lower Word (Tot. Act. Harm. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANTHLSB = 0xE4; // Lower Word (Tot. Act. Harm. Power)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PMEANHLSB = 0xE5; // Lower Word (A Act. Harm. Power) Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANAHLSB = 0xE5; // Lower Word (A Act. Harm. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANAHLSB = 0xE5; // Lower Word (A Act. Harm. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANBHLSB = 0xE6; // Lower Word (B Act. Harm. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANBHLSB = 0xE6; // Lower Word (B Act. Harm. Power)
|
||||||
static const uint16_t ATM90E32_REGISTER_PMEANCHLSB = 0xE7; // Lower Word (C Act. Harm. Power)
|
static const uint16_t ATM90E32_REGISTER_PMEANCHLSB = 0xE7; // Lower Word (C Act. Harm. Power)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_URMSLSB = 0xE9; // Lower Word RMS Voltage Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSALSB = 0xE9; // Lower Word (A RMS Voltage)
|
static const uint16_t ATM90E32_REGISTER_URMSALSB = 0xE9; // Lower Word (A RMS Voltage)
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSBLSB = 0xEA; // Lower Word (B RMS Voltage)
|
static const uint16_t ATM90E32_REGISTER_URMSBLSB = 0xEA; // Lower Word (B RMS Voltage)
|
||||||
static const uint16_t ATM90E32_REGISTER_URMSCLSB = 0xEB; // Lower Word (C RMS Voltage)
|
static const uint16_t ATM90E32_REGISTER_URMSCLSB = 0xEB; // Lower Word (C RMS Voltage)
|
||||||
|
static const uint16_t ATM90E32_REGISTER_IRMSLSB = 0xED; // Lower Word RMS Current Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSALSB = 0xED; // Lower Word (A RMS Current)
|
static const uint16_t ATM90E32_REGISTER_IRMSALSB = 0xED; // Lower Word (A RMS Current)
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSBLSB = 0xEE; // Lower Word (B RMS Current)
|
static const uint16_t ATM90E32_REGISTER_IRMSBLSB = 0xEE; // Lower Word (B RMS Current)
|
||||||
static const uint16_t ATM90E32_REGISTER_IRMSCLSB = 0xEF; // Lower Word (C RMS Current)
|
static const uint16_t ATM90E32_REGISTER_IRMSCLSB = 0xEF; // Lower Word (C RMS Current)
|
||||||
|
@ -237,10 +250,12 @@ static const uint16_t ATM90E32_REGISTER_IRMSCLSB = 0xEF; // Lower Word (C RMS
|
||||||
static const uint16_t ATM90E32_REGISTER_UPEAKA = 0xF1; // A Voltage Peak
|
static const uint16_t ATM90E32_REGISTER_UPEAKA = 0xF1; // A Voltage Peak
|
||||||
static const uint16_t ATM90E32_REGISTER_UPEAKB = 0xF2; // B Voltage Peak
|
static const uint16_t ATM90E32_REGISTER_UPEAKB = 0xF2; // B Voltage Peak
|
||||||
static const uint16_t ATM90E32_REGISTER_UPEAKC = 0xF3; // C Voltage Peak
|
static const uint16_t ATM90E32_REGISTER_UPEAKC = 0xF3; // C Voltage Peak
|
||||||
|
static const uint16_t ATM90E32_REGISTER_IPEAK = 0xF5; // Peak Current Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_IPEAKA = 0xF5; // A Current Peak
|
static const uint16_t ATM90E32_REGISTER_IPEAKA = 0xF5; // A Current Peak
|
||||||
static const uint16_t ATM90E32_REGISTER_IPEAKB = 0xF6; // B Current Peak
|
static const uint16_t ATM90E32_REGISTER_IPEAKB = 0xF6; // B Current Peak
|
||||||
static const uint16_t ATM90E32_REGISTER_IPEAKC = 0xF7; // C Current Peak
|
static const uint16_t ATM90E32_REGISTER_IPEAKC = 0xF7; // C Current Peak
|
||||||
static const uint16_t ATM90E32_REGISTER_FREQ = 0xF8; // Frequency
|
static const uint16_t ATM90E32_REGISTER_FREQ = 0xF8; // Frequency
|
||||||
|
static const uint16_t ATM90E32_REGISTER_PANGLE = 0xF9; // Mean Phase Angle Reg Base
|
||||||
static const uint16_t ATM90E32_REGISTER_PANGLEA = 0xF9; // A Mean Phase Angle
|
static const uint16_t ATM90E32_REGISTER_PANGLEA = 0xF9; // A Mean Phase Angle
|
||||||
static const uint16_t ATM90E32_REGISTER_PANGLEB = 0xFA; // B Mean Phase Angle
|
static const uint16_t ATM90E32_REGISTER_PANGLEB = 0xFA; // B Mean Phase Angle
|
||||||
static const uint16_t ATM90E32_REGISTER_PANGLEC = 0xFB; // C Mean Phase Angle
|
static const uint16_t ATM90E32_REGISTER_PANGLEC = 0xFB; // C Mean Phase Angle
|
||||||
|
|
|
@ -9,8 +9,10 @@ from esphome.const import (
|
||||||
CONF_PHASE_A,
|
CONF_PHASE_A,
|
||||||
CONF_PHASE_B,
|
CONF_PHASE_B,
|
||||||
CONF_PHASE_C,
|
CONF_PHASE_C,
|
||||||
|
CONF_PHASE_ANGLE,
|
||||||
CONF_POWER,
|
CONF_POWER,
|
||||||
CONF_POWER_FACTOR,
|
CONF_POWER_FACTOR,
|
||||||
|
CONF_APPARENT_POWER,
|
||||||
CONF_FREQUENCY,
|
CONF_FREQUENCY,
|
||||||
CONF_FORWARD_ACTIVE_ENERGY,
|
CONF_FORWARD_ACTIVE_ENERGY,
|
||||||
CONF_REVERSE_ACTIVE_ENERGY,
|
CONF_REVERSE_ACTIVE_ENERGY,
|
||||||
|
@ -25,12 +27,13 @@ from esphome.const import (
|
||||||
ICON_CURRENT_AC,
|
ICON_CURRENT_AC,
|
||||||
STATE_CLASS_MEASUREMENT,
|
STATE_CLASS_MEASUREMENT,
|
||||||
STATE_CLASS_TOTAL_INCREASING,
|
STATE_CLASS_TOTAL_INCREASING,
|
||||||
|
UNIT_AMPERE,
|
||||||
|
UNIT_DEGREES,
|
||||||
|
UNIT_CELSIUS,
|
||||||
UNIT_HERTZ,
|
UNIT_HERTZ,
|
||||||
UNIT_VOLT,
|
UNIT_VOLT,
|
||||||
UNIT_AMPERE,
|
|
||||||
UNIT_WATT,
|
|
||||||
UNIT_CELSIUS,
|
|
||||||
UNIT_VOLT_AMPS_REACTIVE,
|
UNIT_VOLT_AMPS_REACTIVE,
|
||||||
|
UNIT_WATT,
|
||||||
UNIT_WATT_HOURS,
|
UNIT_WATT_HOURS,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -40,6 +43,10 @@ CONF_GAIN_PGA = "gain_pga"
|
||||||
CONF_CURRENT_PHASES = "current_phases"
|
CONF_CURRENT_PHASES = "current_phases"
|
||||||
CONF_GAIN_VOLTAGE = "gain_voltage"
|
CONF_GAIN_VOLTAGE = "gain_voltage"
|
||||||
CONF_GAIN_CT = "gain_ct"
|
CONF_GAIN_CT = "gain_ct"
|
||||||
|
CONF_HARMONIC_POWER = "harmonic_power"
|
||||||
|
CONF_PEAK_CURRENT = "peak_current"
|
||||||
|
CONF_PEAK_CURRENT_SIGNED = "peak_current_signed"
|
||||||
|
UNIT_DEG = "degrees"
|
||||||
LINE_FREQS = {
|
LINE_FREQS = {
|
||||||
"50HZ": 50,
|
"50HZ": 50,
|
||||||
"60HZ": 60,
|
"60HZ": 60,
|
||||||
|
@ -85,6 +92,12 @@ ATM90E32_PHASE_SCHEMA = cv.Schema(
|
||||||
accuracy_decimals=2,
|
accuracy_decimals=2,
|
||||||
state_class=STATE_CLASS_MEASUREMENT,
|
state_class=STATE_CLASS_MEASUREMENT,
|
||||||
),
|
),
|
||||||
|
cv.Optional(CONF_APPARENT_POWER): sensor.sensor_schema(
|
||||||
|
unit_of_measurement=UNIT_WATT,
|
||||||
|
accuracy_decimals=2,
|
||||||
|
device_class=DEVICE_CLASS_POWER,
|
||||||
|
state_class=STATE_CLASS_MEASUREMENT,
|
||||||
|
),
|
||||||
cv.Optional(CONF_POWER_FACTOR): sensor.sensor_schema(
|
cv.Optional(CONF_POWER_FACTOR): sensor.sensor_schema(
|
||||||
accuracy_decimals=2,
|
accuracy_decimals=2,
|
||||||
device_class=DEVICE_CLASS_POWER_FACTOR,
|
device_class=DEVICE_CLASS_POWER_FACTOR,
|
||||||
|
@ -102,6 +115,24 @@ ATM90E32_PHASE_SCHEMA = cv.Schema(
|
||||||
device_class=DEVICE_CLASS_ENERGY,
|
device_class=DEVICE_CLASS_ENERGY,
|
||||||
state_class=STATE_CLASS_TOTAL_INCREASING,
|
state_class=STATE_CLASS_TOTAL_INCREASING,
|
||||||
),
|
),
|
||||||
|
cv.Optional(CONF_PHASE_ANGLE): sensor.sensor_schema(
|
||||||
|
unit_of_measurement=UNIT_DEGREES,
|
||||||
|
accuracy_decimals=2,
|
||||||
|
device_class=DEVICE_CLASS_POWER,
|
||||||
|
state_class=STATE_CLASS_MEASUREMENT,
|
||||||
|
),
|
||||||
|
cv.Optional(CONF_HARMONIC_POWER): sensor.sensor_schema(
|
||||||
|
unit_of_measurement=UNIT_WATT,
|
||||||
|
accuracy_decimals=2,
|
||||||
|
device_class=DEVICE_CLASS_POWER,
|
||||||
|
state_class=STATE_CLASS_MEASUREMENT,
|
||||||
|
),
|
||||||
|
cv.Optional(CONF_PEAK_CURRENT): sensor.sensor_schema(
|
||||||
|
unit_of_measurement=UNIT_AMPERE,
|
||||||
|
accuracy_decimals=2,
|
||||||
|
device_class=DEVICE_CLASS_CURRENT,
|
||||||
|
state_class=STATE_CLASS_MEASUREMENT,
|
||||||
|
),
|
||||||
cv.Optional(CONF_GAIN_VOLTAGE, default=7305): cv.uint16_t,
|
cv.Optional(CONF_GAIN_VOLTAGE, default=7305): cv.uint16_t,
|
||||||
cv.Optional(CONF_GAIN_CT, default=27961): cv.uint16_t,
|
cv.Optional(CONF_GAIN_CT, default=27961): cv.uint16_t,
|
||||||
}
|
}
|
||||||
|
@ -132,6 +163,7 @@ CONFIG_SCHEMA = (
|
||||||
CURRENT_PHASES, upper=True
|
CURRENT_PHASES, upper=True
|
||||||
),
|
),
|
||||||
cv.Optional(CONF_GAIN_PGA, default="2X"): cv.enum(PGA_GAINS, upper=True),
|
cv.Optional(CONF_GAIN_PGA, default="2X"): cv.enum(PGA_GAINS, upper=True),
|
||||||
|
cv.Optional(CONF_PEAK_CURRENT_SIGNED, default=False): cv.boolean,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
.extend(cv.polling_component_schema("60s"))
|
.extend(cv.polling_component_schema("60s"))
|
||||||
|
@ -162,6 +194,9 @@ async def to_code(config):
|
||||||
if reactive_power_config := conf.get(CONF_REACTIVE_POWER):
|
if reactive_power_config := conf.get(CONF_REACTIVE_POWER):
|
||||||
sens = await sensor.new_sensor(reactive_power_config)
|
sens = await sensor.new_sensor(reactive_power_config)
|
||||||
cg.add(var.set_reactive_power_sensor(i, sens))
|
cg.add(var.set_reactive_power_sensor(i, sens))
|
||||||
|
if apparent_power_config := conf.get(CONF_APPARENT_POWER):
|
||||||
|
sens = await sensor.new_sensor(apparent_power_config)
|
||||||
|
cg.add(var.set_apparent_power_sensor(i, sens))
|
||||||
if power_factor_config := conf.get(CONF_POWER_FACTOR):
|
if power_factor_config := conf.get(CONF_POWER_FACTOR):
|
||||||
sens = await sensor.new_sensor(power_factor_config)
|
sens = await sensor.new_sensor(power_factor_config)
|
||||||
cg.add(var.set_power_factor_sensor(i, sens))
|
cg.add(var.set_power_factor_sensor(i, sens))
|
||||||
|
@ -171,6 +206,15 @@ async def to_code(config):
|
||||||
if reverse_active_energy_config := conf.get(CONF_REVERSE_ACTIVE_ENERGY):
|
if reverse_active_energy_config := conf.get(CONF_REVERSE_ACTIVE_ENERGY):
|
||||||
sens = await sensor.new_sensor(reverse_active_energy_config)
|
sens = await sensor.new_sensor(reverse_active_energy_config)
|
||||||
cg.add(var.set_reverse_active_energy_sensor(i, sens))
|
cg.add(var.set_reverse_active_energy_sensor(i, sens))
|
||||||
|
if phase_angle_config := conf.get(CONF_PHASE_ANGLE):
|
||||||
|
sens = await sensor.new_sensor(phase_angle_config)
|
||||||
|
cg.add(var.set_phase_angle_sensor(i, sens))
|
||||||
|
if harmonic_active_power_config := conf.get(CONF_HARMONIC_POWER):
|
||||||
|
sens = await sensor.new_sensor(harmonic_active_power_config)
|
||||||
|
cg.add(var.set_harmonic_active_power_sensor(i, sens))
|
||||||
|
if peak_current_config := conf.get(CONF_PEAK_CURRENT):
|
||||||
|
sens = await sensor.new_sensor(peak_current_config)
|
||||||
|
cg.add(var.set_peak_current_sensor(i, sens))
|
||||||
|
|
||||||
if frequency_config := config.get(CONF_FREQUENCY):
|
if frequency_config := config.get(CONF_FREQUENCY):
|
||||||
sens = await sensor.new_sensor(frequency_config)
|
sens = await sensor.new_sensor(frequency_config)
|
||||||
|
@ -182,3 +226,4 @@ async def to_code(config):
|
||||||
cg.add(var.set_line_freq(config[CONF_LINE_FREQUENCY]))
|
cg.add(var.set_line_freq(config[CONF_LINE_FREQUENCY]))
|
||||||
cg.add(var.set_current_phases(config[CONF_CURRENT_PHASES]))
|
cg.add(var.set_current_phases(config[CONF_CURRENT_PHASES]))
|
||||||
cg.add(var.set_pga_gain(config[CONF_GAIN_PGA]))
|
cg.add(var.set_pga_gain(config[CONF_GAIN_PGA]))
|
||||||
|
cg.add(var.set_peak_current_signed(config[CONF_PEAK_CURRENT_SIGNED]))
|
||||||
|
|
Loading…
Add table
Reference in a new issue