esphome/esphome/components/xpt2046/xpt2046.cpp

217 lines
6 KiB
C++

#include "xpt2046.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include <algorithm>
namespace esphome {
namespace xpt2046 {
static const char *const TAG = "xpt2046";
void XPT2046Component::setup() {
if (this->irq_pin_ != nullptr) {
// The pin reports a touch with a falling edge. Unfortunately the pin goes also changes state
// while the channels are read and wiring it as an interrupt is not straightforward and would
// need careful masking. A GPIO poll is cheap so we'll just use that.
this->irq_pin_->setup(); // INPUT
}
spi_setup();
read_adc_(0xD0); // ADC powerdown, enable PENIRQ pin
}
void XPT2046Component::loop() {
if (this->irq_pin_ != nullptr) {
// Force immediate update if a falling edge (= touched is seen) Ignore if still active
// (that would mean that we missed the release because of a too long update interval)
bool val = this->irq_pin_->digital_read();
if (!val && this->last_irq_ && !this->touched) {
ESP_LOGD(TAG, "Falling penirq edge, forcing update");
update();
}
this->last_irq_ = val;
}
}
void XPT2046Component::update() {
int16_t data[6];
bool touch = false;
uint32_t now = millis();
this->z_raw = 0;
// In case the penirq pin is present only do the SPI transaction if it reports a touch (is low).
// The touch has to be also confirmed with checking the pressure over threshold
if (this->irq_pin_ == nullptr || !this->irq_pin_->digital_read()) {
enable();
int16_t z1 = read_adc_(0xB1 /* Z1 */);
int16_t z2 = read_adc_(0xC1 /* Z2 */);
this->z_raw = z1 + 4095 - z2;
touch = (this->z_raw >= this->threshold_);
if (touch) {
read_adc_(0x91 /* Y */); // dummy Y measure, 1st is always noisy
data[0] = read_adc_(0xD1 /* X */);
data[1] = read_adc_(0x91 /* Y */); // make 3 x-y measurements
data[2] = read_adc_(0xD1 /* X */);
data[3] = read_adc_(0x91 /* Y */);
data[4] = read_adc_(0xD1 /* X */);
}
data[5] = read_adc_(0x90 /* Y */); // Last Y touch power down
disable();
}
if (touch) {
this->x_raw = best_two_avg(data[0], data[2], data[4]);
this->y_raw = best_two_avg(data[1], data[3], data[5]);
} else {
this->x_raw = this->y_raw = 0;
}
ESP_LOGV(TAG, "Update [x, y] = [%d, %d], z = %d%s", this->x_raw, this->y_raw, this->z_raw, (touch ? " touched" : ""));
if (touch) {
// Normalize raw data according to calibration min and max
int16_t x_val = normalize(this->x_raw, this->x_raw_min_, this->x_raw_max_);
int16_t y_val = normalize(this->y_raw, this->y_raw_min_, this->y_raw_max_);
if (this->swap_x_y_) {
std::swap(x_val, y_val);
}
if (this->invert_x_) {
x_val = 0x7fff - x_val;
}
if (this->invert_y_) {
y_val = 0x7fff - y_val;
}
x_val = (int16_t)((int) x_val * this->x_dim_ / 0x7fff);
y_val = (int16_t)((int) y_val * this->y_dim_ / 0x7fff);
if (!this->touched || (now - this->last_pos_ms_) >= this->report_millis_) {
ESP_LOGD(TAG, "Raw [x, y] = [%d, %d], transformed = [%d, %d]", this->x_raw, this->y_raw, x_val, y_val);
this->x = x_val;
this->y = y_val;
this->touched = true;
this->last_pos_ms_ = now;
this->on_state_trigger_->process(this->x, this->y, true);
for (auto *button : this->buttons_)
button->touch(this->x, this->y);
}
} else {
if (this->touched) {
ESP_LOGD(TAG, "Released [%d, %d]", this->x, this->y);
this->touched = false;
this->on_state_trigger_->process(this->x, this->y, false);
for (auto *button : this->buttons_)
button->release();
}
}
}
void XPT2046Component::set_calibration(int16_t x_min, int16_t x_max, int16_t y_min, int16_t y_max) {
this->x_raw_min_ = std::min(x_min, x_max);
this->x_raw_max_ = std::max(x_min, x_max);
this->y_raw_min_ = std::min(y_min, y_max);
this->y_raw_max_ = std::max(y_min, y_max);
this->invert_x_ = (x_min > x_max);
this->invert_y_ = (y_min > y_max);
}
void XPT2046Component::dump_config() {
ESP_LOGCONFIG(TAG, "XPT2046:");
LOG_PIN(" IRQ Pin: ", this->irq_pin_);
ESP_LOGCONFIG(TAG, " X min: %d", this->x_raw_min_);
ESP_LOGCONFIG(TAG, " X max: %d", this->x_raw_max_);
ESP_LOGCONFIG(TAG, " Y min: %d", this->y_raw_min_);
ESP_LOGCONFIG(TAG, " Y max: %d", this->y_raw_max_);
ESP_LOGCONFIG(TAG, " X dim: %d", this->x_dim_);
ESP_LOGCONFIG(TAG, " Y dim: %d", this->y_dim_);
if (this->swap_x_y_) {
ESP_LOGCONFIG(TAG, " Swap X/Y");
}
ESP_LOGCONFIG(TAG, " threshold: %d", this->threshold_);
ESP_LOGCONFIG(TAG, " Report interval: %u", this->report_millis_);
LOG_UPDATE_INTERVAL(this);
}
float XPT2046Component::get_setup_priority() const { return setup_priority::DATA; }
int16_t XPT2046Component::best_two_avg(int16_t x, int16_t y, int16_t z) {
int16_t da, db, dc;
int16_t reta = 0;
da = (x > y) ? x - y : y - x;
db = (x > z) ? x - z : z - x;
dc = (z > y) ? z - y : y - z;
if (da <= db && da <= dc) {
reta = (x + y) >> 1;
} else if (db <= da && db <= dc) {
reta = (x + z) >> 1;
} else {
reta = (y + z) >> 1;
}
return reta;
}
int16_t XPT2046Component::normalize(int16_t val, int16_t min_val, int16_t max_val) {
int16_t ret;
if (val <= min_val) {
ret = 0;
} else if (val >= max_val) {
ret = 0x7fff;
} else {
ret = (int16_t)((int) 0x7fff * (val - min_val) / (max_val - min_val));
}
return ret;
}
int16_t XPT2046Component::read_adc_(uint8_t ctrl) {
uint8_t data[2];
write_byte(ctrl);
data[0] = read_byte();
data[1] = read_byte();
return ((data[0] << 8) | data[1]) >> 3;
}
void XPT2046OnStateTrigger::process(int x, int y, bool touched) { this->trigger(x, y, touched); }
void XPT2046Button::touch(int16_t x, int16_t y) {
bool touched = (x >= this->x_min_ && x <= this->x_max_ && y >= this->y_min_ && y <= this->y_max_);
if (touched) {
this->publish_state(true);
this->state_ = true;
} else {
release();
}
}
void XPT2046Button::release() {
if (this->state_) {
this->publish_state(false);
this->state_ = false;
}
}
} // namespace xpt2046
} // namespace esphome